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Lattice mismatch in epitaxial layered heterostructures with small characteristic lengths induces
large, spatially nonuniform strains. The components of the strain tensor have been shown
experimentally to affect the electronic properties of semiconductor structures. Here, a technique is
presented for calculating the influence of strain on electronic properties. First, the linear elastic
strain in a quantum dot or wire is determined by a finite element calculation. A strain-induced
potential field that shifts and couples the valence subbands in the structure is then determined from
deformation potential theory. The time-independent Sdimger equation, including the
nonuniform strain-induced potential and a potential due to the heterostructure layers, is then solved,
also by means of the finite element method. The solution consists of the wave functions and energies
of states confined to the active region of the structure; these are the features which govern the
electronic and transport properties of devices. As examples, tw®@eSi, submicron resonant
tunneling devices, a quantum wire with two-dimensional confinement and a quantum dot with
three-dimensional confinement, are analyzed. Experimentally measured resonant tunneling current
peaks corresponding to the valence subbands in the material are modeled by generating densities of
confined states in the structures. Size and composition-dependent strain effects are examined for
both devices. In both the quantum dot and the quantum wire, the strain effects on the wave functions
and energies of confined states are evident in the calculated densities of confined states in the
structures, which are found to be consistent with experimentally measured tunneling current/voltage
curves for resonant tunneling diodes. 198 American Institute of Physics.
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I. INTRODUCTION from an emitter region, into a quantum well, and then into a
collector region. The material combinations in these devices
Epitaxially grown semiconductor heterostructures oftenand their geometrical features, including the layered struc-
consist of materials with lattice parameters that are misture and the free surfaces, lead to complicated mechanical
matched by as much as several percent. For thin films oftrain fields. Because the sequential tunneling of carriers is a
large lateral extent, these strains are spatially uniform and theimple phenomenon governed by the spectrum of available
effects are well understood. However, structures of relativel\states in the guantum well, and because the devices are ex-
small lateral extent, having distinctive geometric featuresremely small and the operating temperatures are low, it is
and bounded by free surfaces, are characterized by straitikely that the effects of strain on the electronic and transport
that are highly nonuniform. The effects of nonuniform strainproperties can be represented quantitatively through model-
on the electronic properties of semiconductor heterostrucing.
tures have been observed experimentally, but the coupled Calculations of elastic strain fields in semiconductor
physical phenomenon has not been extensively modefed. structures are well suited for the finite element method,
The analysis of strain effects in a quantum mechanical modekhich is a common tool in continuum mechantd¢$.In the
of semiconductor devices has only recently been attemptedchnique presented here, the finite element calculation of the
by Pryoret al,>~’ Williamsonet al.® and Grundmanet al.®  strain in a device is made using a general purpose structural
who calculate strain-induced potentials and wave functionsnechanics finite element packageHowever, the use of the
in quantum dots, and Zung&t,who reviews the topic of finite element methodFEM) in quantum mechanics, which
electronic structure in pyramidal semiconductor quantunis reviewed by Linderberdf is much less common. Models
dots based on atomistic methods. Few studies have madé semiconductor devices by means of the FEM have been
contact with experimental measurements; Pisttlal!!  proposed by a number of authors for one- and two-
model strain effects on the band gap in buried quantum dotslimensional problems. Several FEM models are available for
which is consistent with photoluminescence data. one-dimensional resonant tunneling structures, which in-
Strained semiconductor devices that are based on quaotlude the effects of arbitrary potential profiles due to layered
tum effects, particularly charge confinement in one or more&compositiont®>~1’ Chert® models a one-dimensional resonant
spatial dimensions, underlie a potentially significant technoltunneling diode using the FEM and calculates a current—
ogy. Much can be learned about quantum effects by studyingoltage curve based on a quantum hydrodynamic model.
the class of devices based on resonant tunneling of carrieElectron wave functions and band structures for two-
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FIG. 2. Finite element mesh used to calculate strain in the quantum wire.
-y —— Since the strain is symmetric laterally and vertically about the center axes of
the device, it is possible to model one quarter of the cross section of the
<_¥d_/__> structure only. The mesh for this region, shown on the left, is very highly

refined in the active region. A portion of the refined mesh near the edge of

FIG. 1. Schematics of the quantum wire and quantum dot. The row-shapeﬁ‘e active region is shown on the right.

quantum wire(Ref. 4 has widthw and extends a distance much larger than
w in the (010) direction. The cylindrical quantum déRef. 2 has diameter
d. strain field is shown to affect the performance of the device.

The model is used to analyze devices studied experimentally
by Akylz et al? and Lukeyet al.* who show the effects of

dimensional quantum wires or quantum dots are analyzeaonuniform strain on the valence-band resonant tunneling

using FEM by a number of investigatdrs.?° Tsuchida and
Tsukad&® calculate the electronic structure of a perfect Si
lattice using a three-dimensional FEM formulation. While (a,)
some recent models for strain effects have used finite differ
ence methods;® no three-dimensional FEM quantum me-
chanical calculations are reported, to the best of our
knowledge.

The finite element method is well suited for finding ap-
proximate solutions of boundary value problems for partial
differential equations in finite domains, especially if {lo@-
known) exact solution is a minimizer of a total energy func-
tional. Both the stress boundary value problem and the quan
tum mechanical boundary value problem in the present stud
are of this type. The central idea of the method is that an
unknown continuous field in the domain is represented ap
proximately in terms of its values at discrete poifiiedes
within the domain; the goal is to determine optimal values
for these nodal quantities. The domain is covered with areas
(in two dimensionsor volumes(in three dimensionsvhose
boundaries are defined geometrically by the nodes; these ai
eas or volumes are the elements. Fields are defined withir
each element in terms of the values of the nodal quantities or -0.002
its boundary by means of a suitable interpolation scheme.
With the complete field defined in terms of the nodal quan-
tities, the total energy can be expressed in terms of the globa -0.004
vector of nodal quantities. Imposition of the condition that
the actual values of the nodal quantities must render the tota
energy a minimum leads to a system of algebraic equations 0.006
for these values. The method is ideally suited for numerical
analysis by computer. In general, it is convergent as nodal 0.95 05 07
spacing diminishes for elliptic partial differential equations (b) normalized position
which have unique solutiorf. It should be noted that the
method is of far broader applicability than is implied by FIG. 3. Measures of strain in the quantum wife) Vertical extensional
these introductory comments. component of straind;,) in the upper half of the quantum wire, from the

In this work, a finite element model is used to analyze::enter to the edge. The pottom two Iay_ers are th_e center of the quantum well

. . ayer, and the upper barrier layéb) Radial extensional component of strain
both the continuum mechanics and the valence-band quanz, ) in the center of the well layers of three different wires. The strain is
tum mechanics of a strained semiconductor device. Theniform near the centdfeft), but highly nonuniform near the edggght).
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current versus voltage characteristics ofGa;_, quantum  material in that layer. Continuity of displacements is required
wires and quantum dots, shown schematically in Fig. 1. Th@cross the layer interfaces; it is this constraint which gives
main features of the model are described in Sec. II; thes#se to stress. The outer surfaces are considered to be traction
include the strain calculation, the treatment of the strain effree, implying that certain components of the stress tensor
fects by deformation potential theory, and the quantum mevanish, and the material is allowed to relax until it reaches an
chanical model. The finite element formulation for the two-€quilibrium configuration. Thus, using a standard structural
or three-dimensional Schdinger equation incorporating va- mechanics finite element progratthe complete state of
lence subband coupling and the nonuniform potential is outstress, strain, and displacement is determined throughout the
lined in Sec. Ill. The results of the calculations for the reso-device. Strain components are shown in Fig. 3 for the reso-
nant tunneling structures are discussed in Sec. IV, anfant tunneling diode quantum wire. Strain is a tensor quan-
comparisons are made between the calculations and tHly, and its components show significant variation with po-

available experimental results. sition throughout the device. In smaller devices, the strain is
more nonuniform due to the pervasive effect of relaxation at

II. CONTINUUM AND QUANTUM MECHANICAL the free surfaces.

MODELS

The analysis of a strained semiconductor heterostructur,
is divided into three calculations. First, a linear elastic finite
element calculation is made to determine the strain field, The components of strain induce a potential field that
which is a function of the composition and the geometry ofaffects the wave functions and energies of the charge carriers
the structure. Second, the strain-induced potential field is caih an otherwise perfect crystal. From first-order perturbation
culated using deformation potential theory. Third, the time-theory, the strain-induced potential that affects wave func-
independent Schdinger equation including the strain- tions in subbandse and g is formed from the tensor
induced potential is solved numerically by means of theproduct®
finite eleme_nt method to obtain the spectrum of energies and V(r)=De, (1), (1)
wave functions of available states. Iy

B. Strain-induced potential

wherer is an arbitrary position vecto;;(r) is the strain
tensor field, and)i‘}ﬂ is the deformation potential tensor for

The strain field due to the constraint of epitaxy associ-subbandse and 8, which consists of components derived
ated with the mismatched lattice parameters of the hetercexperimentally. The indicel§ range over the coordinate di-
structure layers is determined within the framework of linearrections. For the $Ge _, material combination, the
elasticity theory. The structure is discretized spatially with avalence-band electronic properties are dominated by the
mesh, which is more refined near free surfaces and in regiorgeavy-hole and light-hole subbands, so &febasis includes
where the mismatch between adjacent layers is larger. Thihe heavy-holgHH) subbands denoted K$/2,+3/2), and
finite element mesh used for a strain calculation in the rescthe light-hole (LH) subbands denoted bj3/2,+1/2). The
nant tunneling diode quantum wire is shown in Fig. 2. Thesplit-off subbandgSO) are ignored because the separation
mismatch condition is imposed in the finite element calcula-energy is considered to be large enough so that coupling
tion by prescribing in each layer a uniform stress-free dila-effects can be neglected. The potential equation can be writ-
tation that is proportional to the bulk lattice parameter of theten as

A. Strain field calculation

|%v+%> %_% |%!+%> |%!_%>
|3,+3) Diljl(r)fij(r) Diljz(r)fij(f) Dﬁ3(r)€ij(r) Dilj4(r)€ij(r)
veB(r)=13-3 DE{r)e;(r) DiANe;(r) DIXr)e;(r) DEre;(n) |, 2

|3, +3) Dﬁl(r)eij(r) Disjz(r)fij(r) Disjs(r)eij(r) Di3j4(r)€ij(r)
15.-3) \Di(Ne;(r) Di(Ne;(r) DiXr)e;(r) DiYr)e;(r)

where the term@ﬁ‘ﬂ are the deformation potential tensors between the deformation potential tensor and the strain ten-
which range over the spatial dimensianandj. The defor-  sor. Details of theDﬁﬂ terms are given in Appendix A, along
mation potential tensors contain material constants, whichvith the material constants used in the calculations. Thus, for
vary spatially as the composition varies in the device; values calculated strain tensor function of positiep(r), it is

of these constants for a wide range of materials are knowpossible to calculate the deformation potential function of
from experiments. The repeatgdindices indicate the scalar position V#(r) to be included in the quantum mechanical
product(contraction over the product of second rank tensorsanalysis.
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C. Quantum mechanical model Where\If"(r) is the wave function in subband, E is the

. oo s
In resonant tunneling structures, tunneling currents ar€€"9YHicp (Ir; Is thek- pram|Iton|an operator, and*(r)

determined by available quantized states for individual® & p;)teknna unction o posr;:on |

charge carriers. The energies and wave functions of a single 1he K-p perturbation method is used to model the me-

carrier in the semiconductor structure are solutions of thé!um- Using this technique, there is a tensor function for the
time-independent Schadinger equation effective mass associated with each subband, and there are

k-p terms coupling the effective masses in different sub-
bands. Written in the same form as Eg) the Hamiltonian

HEG(D AN+ VBN WA(r) = EV (1), @ s
22 13- 12ty 153
1343 JLIOVE LEOVE LEVE LANV3
n=12-2 | LFOVE OV VG LnvE |, (@)

15.+3 | LIVE LANVE LENVE LY()V;
-3 \LHMVE LANVE LEANVE LV

where theLﬁﬁ tensors on the diagonal of the matrix are thewires and quantum dots are described in Appendix B. The
effective-mass tensors for each subband, and the off-diagonaiesh extends to the free or insulated surfaces, which impose
Li”j‘ﬁ tensors introduce &-p coupling of subbands. Like the an infinite potential on the wave function. The wave func-

terms in the deformation potential tensors, the components dfons and energies of the states localized in the active region
L“'B contain material constants, and thus, vary spatiallyare insensitive to remote boundary conditions, i.e., condi-

throughout the device. The exact forms of ﬂh‘(?g tensors, tions at boundaries located a large distance away relative to
which come from the Luttinger—Kohn Hamiltonian, are the active region size. The mesh is more refined in the active

given in Appendix A. region of the device, where large wave-function gradients are
The deformation potential and effective-mass materiakexpected.
constants in Eq92) and(4) are functions of the local com- The form of the Schrdinger equation to be solved on

position of the device. Values for the constants in each layethe finite element mesh is obtained by minimizing the total
are given by linear interpolation of the material constantsvariation of the weak, or Galerkin form of the equation with
associated with each of the pure elements composing thagspect to the wave function. The minimum in variation with

layer. respect to the wave function corresponds physically to a
The nonuniform potentiaV/*4(r) consists of contribu- minimum energy. Details of the complete variational formu-

tions from two sources and is given by lation of the finite element technique used here are included
in Appendix B; a general discussion of the variational for-

Vaﬁ(r)zvgﬁ(r)Jrvgﬁ(r)’ (5) mulation of the finite element method is given by Strang and

Fix.2” The functional corresponding to the weak form of the
whereV24(r) is due to the valence-band alignment of mate-time-independent Schdinger equation with a nonuniform
rial at a given position in the device, and®®(r) is the  Potential(3) is given by
strain-induced potential given in E{l). The strain-induced
potentialvi’ﬁ(r), like the components of the strain tensor, is
in general nonuniform in both the lateral directions and the I(ve)= LV‘PQLQ'BV‘P%R
vertical direction in the structure. The composition-based
band offset potential\/g”ﬁ(r) is nonuniform only in the
growth, or vertical direction in the structure. The total poten-
tial V¥4(r) is shown in Fig. 4 for a representative quantum
dot calculation.

+ f Yoy ldR—E f YPLdR, (6)
R R

where W¢, L%# andV*# are functions of position in the
structure. The ternb*? is taken to be constant within each
Il. FINITE ELEMENT TECHNIQUE FOR THE element of the mesh. The fieldg®, V¥, and V*# are
SCHRODINGER EQUATION represented by their nodal values. Values throughout each
element are determined by interpolation according to the par-
ticular shape functions that are adopted. Thus, for shape

The physical domain of the device is discretized into afunctionsN(r) used here, which are described in more detail
mesh of nodes and elements. Elements used for the quantumAppendix B, these fields are written as

A. Finite element formulation
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(a) This form of the Schrdinger equation can be much
_— . more simply expressed as
[
eV: 0.98 1.01 1,04 1.07 1.08 1.12] Kij¥;=EM;;¥;, )

where the indices andj range over all nodal wave-function
degrees of freedom, and the repeated indices indicate a sum-
mation. Details of the assembly of the matritesandM are
given in Appendix B.

B. Finite element solution
1. Energies and wave functions

The finite element expression of the Satirger equa-
tion (9) is in the form of a generalized eigenvalue equation.
o T - The problem hasa solutions, whera is the total number of

d nodes in the mesh and is the number of subbands in the
quantum mechanical basis. The solutions consist of energies
. | E and wave function®. The mesh size used in the calcula-
T ¢E tions reported here results in a very accurate determination of
the energiesE and good spatial resolution of the wave-
M o7 functions ¥, particularly for the lower-energy states. Con-
" ; D'E; $ vergence of the method is found by comparing solutions for
g'i meshes with successively decreasing nodal separation. Ele-
Giﬂ ment refinement is particularly important in the active region
i 0o of the device, where the wave-function gradients are largest.
= E00A —= ' ) Of the na eigenstates, some states can be found for
(b) which the wave function¥(r) or the probability density

|W(r)|? is confined to the active region of the device. Ex-
FIG. 4. The potential field for the heavy-hole band in the strained quantumamples of eigenstates confined to the quantum well layers of
dot, and corresponding representative eigenstéaeShe axisymmetric po-  the quantum dot are shown in Fig. 4. The lowest-energy
tential field is high in the barrier layers and low in the well layer, and - .
radially nonuniform throughout the devicgn) The lower-energy represen- states of these confined eigenstates are the mOSt_releV_ant to
tative eigenstate shown on the left has sixfold angular quantization and i§ransport. For the example of the resonant tunneling diode,
localized in a ring-like region near the outer edge of the device. The highersequential tunneling through the double barriers is possible
energy representative state is confined to the center of the device, withy when the tunneling carriers have energies equa| to the
twofold quantization in the angular and vertical directions. . . .

energies of the confined states in the quantum well. Thus,

over a range of applied biases, the excited carriers can access

the confined states and induce a tunneling current only at

all nodes certain resonances corresponding to the spectrum of eigen-
Vo= > WEINA(T), values given by the finite element solution.
A=1 The energy and wave-function solutions reflect the ef-
all nodes all nodes (@) fects of strain, composition, and effective mass on the carri-
Vo= 2 WaVNg(r), V= 2 VgﬁNC(r), ers. The valence-band offset in adjacent layers imposes a
= C=1

large relative potential on the charge carriers, which results

where the coefficients in the summations are the values dft confinement to the quantum well region of the device. The
the fields at the individual nodes. The functiod&(¥®) is  Strain-induced potential is considerably smaller than the
rewritten in a discrete form using EqEZ) and then mini-  valence-band potential, but it also shifts the wave functions

mized with respect to the nodal values of the wave functionsPatially and energetic_:ally. _Confined states corresponding to
W Integrals over the regioR of the entire structure are Valence subbands with higher effective masses occur at
replaced with integrals over individual element volumes/OWer energies.

(Q°) and a summation over all elements, so that the finite

element form of the Schdinger equation becomes 2. Density of states

The density, with respect to energy, of states confined to

@ @ the active region of the device can be obtained directly from

; zs: jge<VNAL BVNBJFNANB; VCBNC)dQ} the spectrum of eigenstates given in the finite element solu-
tion. This density of confined states is a real-space measure

elems of the electronic properties of the device. Effects due to
XWE=E 2 {E > j eNANBdQ}\Ifga (8)  strain, composition, size, and device characteristics can be
AB O seen in the density of confined states. For the example of the
which is a form ideally suited for computation. resonant tunneling diode, the density of confined states can

elems

>
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FIG. 5. Schematic of the quantum wire geometry and composition in the qc, - / \
active region. The 59 A Si barriers surround the 33 4.6, 5, quantum (@] // N\
well layer. An applied bia® induces a tunneling current in tizedirection. '1 65' = '1 (I)6| —! '1 '07’ —
Energy (eV)

be used to examine strain effects on the resonant tunnelingG. 6. Density of confined states in the strained quantum wire of width 250

spectrum. A larger density of confined states with a giver]'™: The two large peaks in the dashed curve show the calculated heavy-hole
and light-hole resonances without considering strain effects. Strain causes

energy increases the prObabi"tY of resona_n.t tunneling py Calne resonances to separate in energy and induces fine structure in the density
riers with the same energy. A high probability of tunneling atof confined states. States at pointgekige stateand B(light-hole statgare

a given energy is measured experimentally as a tunnelingown in Fig. 7.
current peak. Thus, the density of confined states can be used
to make contact with experimental data. ] ] )

A Gaussian broadening technique can be used to calcu- The device operates by the sequential tunneling of
late a continuous density of confined states funcigE). charge carriers from the doped region above the barrier layer,
The energyE; of each confined state is broadened by a nardnto the quantum well layer, and then through the lower bar-
row, normalized Gaussian distribution, and a summatioffier layer. Resonant tunneling spectroscopy is done experi-

over alln states givep(E) as mentally by applying a bias across the device and measuring
the current of tunneling carriers that is induced. A resonant
1 tunneling spectrum can be compiled by measuring the in-
p(E)=2, exp(— (E—E;)?/4a?), (10)  duced currents associated with a range of applied biases. The
=1 2ayn experimental result is a resonant tunnellfy) curve.

wherea is a free parameter that controls the width of the

Gaussian distributions, and thus, the smoothness of the deB- girain field

sity of statesp(E). The parametea is chosen to bring out ) , , ,

the general features @i(E): the broadening of each state is 1€ Strain and displacement fields for this geometry are
larger than the typical separation of individual eigenstatestVO-dimensional since the constraining effect of the material
but narrow enough to bring out features of the density of" the direction along the long axis of the wire imposes a

states that are due to small groups of related eigenstate%t.at_e of plane strain. The mesh is more r_efmed in the active
Typical values ofa are on the order of 1 meV. region of the structure and near the traction free lateral sur-

faces, where the deformation is expected to be more nonuni-
form. The €,, component of straitextensional strain in the

IV. RESULTS AND COMPARISON TO EXPERIMENTS vertical direction is shown in Fig. 3 in and near the active
_ region of the device. Figure 3 also shows thecomponent
A. The Quantum wire of strain along the centerline of the quantum well layer for

structures with three different widths. The important features

are that the strain is a tensor valued function and that the
The gquantum wire considered here is a long, row-relaxing effect of the free surface and the multilayered com-

shaped, layered structure of fixed total heigphfThe geom-  position of the structure lead to nonuniform strain compo-

etry of the structure and the thickness and composition ofients.

each layer, based on the experimental work of Lu&egl.*

are shown in Fig. 5. The middle layers of the device are ) )

considered to be the active region, and include the quantunt esults of the quantum mechanical calculation

well layer (Sp746G& .09 and the two undoped barrier layers Solution of the quantum mechanical problem gives the

(Si). Surrounding the active region are strained,(g5e, 5, energies and wave functions of states confined to the quan-

emitter and collector regions; the thick outermost layers otum well layer in the wire. From this spectrum of states, a

the device are Si. A range of widths are considered in density of confined states is calculated. The density of con-

order to model size-dependent strain effects and to compafeed states for a narrow wireM= 250 nm) is shown in Fig.

results with experimental data. 6, representative eigenstates are shown in Fig. 7, and the

1. Physical system
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FIG. 9. Geometry and composition of the quantum dot de(iRef. 2. The
45 A Si barriers surround the 35 A SiGe, ,5 well. The total height is 80
nm, and the diametetvaries. An applied bia¥ induces a tunneling current
in the z direction.

calculation gives a peak separation of about 20 meV, which
would correspond to a bias shift of roughly 50 mV. The
0.00 0.24 0.48 0.73 0.98 experimentally measured separation is approximately 90
mV. However, it is important to note that the calculation

FIG. 7. Probability densities for two representative confined states witl ; ; ; ; ;
energies denoted by A and B in Fig. 6. The four cross sections above sh(?ShOWn Is for a wire ahgned along (dOO) CrySta"me axis.

the probability density associated with each of the four valence subbands fcﬁfhe experiments of Lukept al. measured wires aligned
a low-energy confined state. The wave function is of mixed type, and localalong a(110) axis, which would exhibit more sensitivity to
ized near the edges of the structure due to strain relaxation. The four lowettrain in the electronic properties due to the form of the de-
cross sections show a higher-energy state that is predomir|aly-1/2) : : aB
type. There is strong mixing with tH8/2,—3/2) subband and there are edge fo_rmatlon 'p(_)tentlal tenSOD'I ! and thus, presumably a
effects due to the relaxed free surfaces. wider strain-induced peak separation. The second character-
istic evident in Fig. 6 is the presence of additional fine fea-
tures in the density of states. Fine structure is also observed
density of confined states for wide and narrow wires areexperimentally in thev=250 nm device. An examination of
compared in Fig. 8. the states present over a range of energies shows that the fine
The results of the calculations are consistent with soméeatures in the density of states are due to groups of similar
experimental observations of Lukest al. First, the strain States separated in energy by the influence of nonuniform
separates the resonant current peaks associated with tA&ain, as shown in Fig. 7.

heavy-hole and light-hole subbands, as shown in Fig. 6. The The size dependence of the strain effect is demonstrated
in the densities of confined states for wires with widths of

250 and 900 nm in Fig. 8. The main feature is the increase in

the energy separation of the heavy-hole and light-hole peaks

S —— w=0.25um as the wire width increases. This is due to the reduced effect
e w=0.90um of free-surface strain relaxation in larger devices, where the
< : average strain values approach the bulk film mismatch
ff; — -— strains. In the smallest devices, the strain is relaxed over a
S L AE,,, significant portion of the volume, so the average strain is
g /i\ smaller and the energy separation between the heavy-hole
e | I and light-hole peaks is smaller.
S P
O Ny / \
w I ,/ \ B. The quantum dot
> ,
’é L /I 1. Physical system
8 /’ The quantum dot considered here is cylindrical in shape

1‘64' =y ‘05 — 1|06 and of fixed height. The features of this structure are based

Energy (eV) ' on the experimental work of Zaslavslet al* and Akyiz
et al2 and are shown in Fig. 9 for a representative calcula-
FIG. 8. Densities of confined states for two quantum wires of differenttion. The three middle layers, which consist of the quantum

widths. The higher average strain in the wider device results in a large ; ; ; ;
energy separation between heavy-hole and light-hole resonance peaks. TWeeII (S|°-75Gq’-25) and the barrier¢Si), make up the active

heavy-hole peak is shown to be shifted by the strain more than the Iight—hoIEeg_ion of the device. Su_rroundi_ng the aCtiYe region are the
peak. emitter and collector regions (3iGe&, »5), which have rela-
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FIG. 11. Densities of heavy-hole confined states for a range of quantum dot
d=250nm diameters. The variation in average strain levels results in the shifting of the
-0.002- @ - ---- d=500nm peaks for dots of different sizes. The energy shift corresponds to the bias

- d=1000nm shift measured by Zaslavslet al. (Ref. 1).

the quantum wire, the strain is very nonuniform, and the
extent of the nonuniformity increases in smaller structures.
This is due to the more significant effect of free-surface
proximity.

| LI AL RS S S S L B B B B S B S

3. Results of the quantum mechanical calculation

P I T U SR |

. 0.75 1
(b) normalized position

For the three-dimensional quantum dot, a reduced quan-
tum mechanical basis is adopted in order to limit the total
FIG. 10. Measures of strain in the quantum d@b. Vertical extensional number of degrees of freedom in the Calcu.lat.lon' T.O .mOdeI
component of straind,,) in the upper half of the quantum dot, from the Only 'the loweSt'e_nergy' heavy'h0|e states, It .'S sufﬂqent to
center to the edge. The bottom two layers are the center of the quantum welionsider a one-dimensional quantum mechanical basis where

layer, and the upper barrier layéb) Radial extensional component of strain - gnly the|3/2,+3/2> band is examined, but it is still possible
(&) in the center of the well layers of three different dots. The strain is ; ; ; ;
uniform near the centgteft), but highly nonuniform near the edgeght). to consider an anisotropic effective mass.

tively low strain due to the outermost layers which are
graded in composition. A range of cylinder diametdrss
considered.

The quantum dot device operates on the same resonant
tunneling principle as the quantum wire. Carriers tunnel se-
quentially from the emitter region, through the upper barrier
into states in the quantum well, and then through the lower
barrier into the collector region. The experimentgV)
curve is a measure of the resonant tunneling spectrum.

— T

T

2. Strain field

The stress, strain, and displacement fields are axisym-
metric for this geometry. The mesh used to calculate the
strain extends from the center axis of the structure outward,
with increasing refinement near the outer, traction-free sur-
face of the device, where the fields are expected to be more

T T

A I
.06 1.07
nonuniform. Figure 10 shows the,, component of strain Energy (eV)
(extensional strain in the axial directiprande,, , the exten-
sional strain along a radial line n the m|dplan_e of the quan<onfined states. The features of the density of confined states are due to
tum well, for three different dot diameters. As in the case ofgroups of eigenstates with similar lateral quantization.

T 1
1.08 1.09

_. Density of States (arbitrary)

FIG. 12. The effect of strain-induced lateral confinement on the density of
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Applied Bias (mV) simplified quantum mechanical modef, but the flexibility
175 200 225 250 275 100 of meshing and the low computational cost of the finite ele-
ment method offer easy access to results which can be com-
pared to experimental data.

The technique is used to examine mismatch strain effects
in quantum wires and quantum dots that operate on a simple
single carrier sequential tunneling effect. Strain effects are
shown to explain several reported trends in experimental
data. In particular, two features of the mismatch strain in the
devices have strong effects on the calculated electronic and
transport properties. First, the average effect of the strain is
to separate the resonant energy peaks associated with the
individual valence subbands in the material. In larger de-
vices, the strain is less relaxed by the free surfaces, so the

! . | I 0 HH-LH subband energy separation is larger. Second, strain
1060 E(Zgr 108\0/ 1090 1100 nonuniformity in the devices is responsible for fine structure
gy (meV) in the resonant tunneling current peaks. This effect is the

FIG. 13. Fine structure in the density of confined states indth@50 nm  source of low-energy ring-like states that are found in the

quantum dotRef. 2. The calculated density of confined states is consistentgma|| cylindrical quantum dots, and the edge states found in
with the experimental current—voltage curve. The density of confined states . .
uantum wires over a range of sizes.

calculation does not account for the roughly linear background current tha&:I ) . ) ) »
is observed experimentally. The main weaknesses in the method are in the simplified

quantum mechanical model. The real-space calculation is
based on &-space material model that is accurate nlkear
=0. The resonant tunneling model assumes ballistic trans-

ments of Zaslavksgt al® and Akyi et al2 First, as seen in port of a single charge carrier, and contact is made with

Fig. 11, there is a size dependence of the strain effect on tHXPeriments in only an approximate way. A linear elastic
resonant energies that is similar to the effect in the quanturonstitutive model provides a good approximation for the
wires. In larger diameter devices, the average strain is highéitrain, although the approach has limitations for such small,
because free-surface relaxation is less significant, so the peRighly strained structureS. Finally, the strain effect is

is shifted further from an idealized case without strain. treated as a linear perturbation to a perfect crystal Hamil-

Second, in the smallest devices, there are additional finéonian, so the fully coupled nature of strain and electronic
features in the density of states that are shown in Fig. 12 tproperties through the chemical bonding is not considered.
be the result of the influence of nonuniform strain. In agreeHowever, the technique shown here is a promising, compu-
ment with the suggestion of Akywet al.? it is evident that tationally inexpensive way to determine strain effects on
the relaxed strain near the lateral surface leads to low-energylectronic properties in semiconductors. The means to over-
ring-like heavy-hole states. The strain-induced energy shiftcome the noted shortcomings are under development.
ing of groups of states produces features in the density of
confined states that are consistent with L&) curves for
devices of the same size. Figure 13 shows a calculated den-
sity of confined states plot and a measur€d) curve for a
d=250 nm quantum dot with 10 meV on the energy axis
equal to 25 mV on the bias axis. Many of the features of the
(V) curve are predicted qualitatively in the density of con- ACKNOWLEDGMENTS
fined states curve, including fine structure below and above
the main heavy-hole resonance energy. However, the density One of the author$H.T.J) would like to acknowledge
of confined states is not equivalent to the resonant tunnelingelpful discussions with V. B. Shenoy and R. Phillips re-
current; the calculation does not consider some importa;?arding the application of the finite element method to quan-
physical effects, most notably the roughly linear backgroungym mechanics. The authors are also grateful for the coop-
current in thel (V) relationship. eration of J. Caro in providing access to experimental data.

The research support of the Office of Naval Research, Con-

tract No. NO0014-95-1-0239, and the MRSEC Program of

the National Science Foundation, under Award No. DMR-
V. CONCLUSIONS 9632524, is gratefully acknowledge@i.T.J. and L.B.P.

A finite element technique is presented here which al-This work has also been supported in part by an NSF Career
lows for the calculation of strain effects on the electronic andAward (DMR-9702725, the ONR Young Investigator Pro-
transport properties of strained quantum wires and dots. Thgram (N0O0014-95-1-0728 and a Sloan Foundation Fellow-
approach is similar to some recent work as it is based on ahip (C.D.A. and A.Z).

‘>
.y

<
c
N
aQ
8
o
2
-
(4]

r 50

Current (mA)

Density of Confined States (arb.)
3

Two significant results compare favorably to the experi-



J. Appl. Phys., Vol. 84, No. 7, 1 October 1998 Johnson et al. 3723
APPENDIX A
The strain-induced potentiad?ﬁ(r) is given by
13.+3) 3.-3) 3.+3) 13,-2)
242 [ DiNe(r) DINe;() DiYNe;(r) Dif(ne(r)
VeB(ry=13,—3| DA e;(r) DFMNe;(r) DFXne;(r) DF(r)e;(r) |, (A1)
|%+%> --(r)fij(r) "(r)Eij(r) Dij(r)fij(r) Dij(r)fij(r)
15, -9\ DI (N e;(r) DFENe;(r) D e(r) DI(r)e;(r)

where each componem; P(r) of the matrix for fixedaB forms a scalar product with the strain tensgy(r) through
summation over andj. And similarly, thek-p Hamiltonian given by Luttinger and Kohn takes the form

|2!

.+

HEe () =13-2)
|3, +3)
|%1_%>

where the each of the matrix componeit
af form a scalar product with the operat®@f;.
nentsD“B(r) andL; A(r) have very similar form The defor-

|g! §> %!_g |g! %> %!_2
LE(VE LEANVE LiXnVvE LV
LENNVE  LEANVE LEVE LE(VE |, (A2)
LANVE LANVE LANVE LYV
LVE LEANVE LNVE LEV

mation potential componenB (r) are

Dii{(r)=D(r)=

D3(r)=Di(r)=
D(r)=D3¥ ()=

0

—| o
—id/2

D (r)=D% (r)=Dr)=Dj}!

RE

7b

—id/2

0

DiA(r)=D{N(r)=D}(r)=DiXr)=

The Hamiltonian componentlsﬁﬁ(r) can be obtained by

(r) for fixed
The compo-

Kohn parameters. Values for the deformation potential con-
stants and the Luttinger—Kohn parameters for Si and Ge are
given below. Values for alloys of Si and Ge are interpolated

from values for the bulk materials.

[a+b/2 0 0 aeV) b(ev) dEv) n Y2 Y3
0 atb/2 0 |, Si 2.1 -15 -3.4 429 0.34 145
L O 0 a—b]| Ge 2.0 —-2.2 —-4.4 13.4 424 5.59
[a—b/2 0 0 ]
APPENDIX B
0 a—b/2 0 ) o o
0 0 b To obtain the finite element form of the ScHinger
- arh. equation, the physical region is divided into elements, which
D24*(r) D42(r) are taken here to be four-noded quadrilaterals for the two-
ij dimensional quantum wire and eight-noded bricks for the
0 —id/2 three-dimensional quantum dot. The wave-functitf,
0 42 A3 wave-function gradientVv¥¢, and potentialV*? are ex-
' (A3) pressed in terms of discretized values at the nodes, and val-
—d/2 0 ues within the elements are determined by linear interpola-
tion using linear shape function®N(r). A group of
(r) quadrilateral elements and the linear shape function for an
associated node are shown in Fig. 14.
—id/2 0
J3
_ Xy 0
5 b
0 0]
0 0 O
0 0O
0 0 O

making the substitutionsA@/2my) y;—a, (£2/mg)y,<b,

2
and (\/—h /mO) 7’3‘_>d into the expressrons for the COMPO- F|G. 14. Elements, nodes, and a representative shape function in the two-
nents D"B(r) where y,, v,, and y; are the Luttinger—

dimensional finite element formulation.
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The form of the Schidinger equation to be solved is  Replacing integrals over the regidwith integration over
LeB(r\V2WA(r)+VB(r)Wh(r)=EW(r). (B1) individual elem(_ant vglgmes&le) and a summation ov_er all
o ) o elements, the final finite element form of the equation be-
The weak form of the equation is obtained by multiplying by ., mes
W¥(r) and integrating over the volume of the body. The first
term is integrated by parts, and the functional corresponding
to the weak form is given by
elems

Im(we)= J VLAV PAdR

> Le(VNAL“ﬁVNB

R A B
+ J PpeyebphdR—E f vepldR. (B2 +NANg>, vgBNC)dQ wh
R R C
The spatially varying fields are then discretized using the clems
shape functiond\(r) to get ST T f NANBdQ}\Ifg. (86)
A B 0¢

nwy=2> > U WIVNALPPEVNgdR
A B R

a afp B
* fR\PANA; Ve NcWgNgdR The contribution of a single element to the left-hand side of

the equation is given by the element stiffness matrix. The
dr. (B3)  Integration over the element is done numerically at a set of
quadrature points. The construction of an element stiffness
The total variation of the functiondll(¥$) is then mini- matrix for the case of two spatial dimensions and a four
miﬁzed with respect to the nodal values of the wave-functiorsubband quantum mechanical basis is as follows:
¥E so that

—Ef W ePENANg
R

dIl(vy) kip = / (VNAL“ﬁVNB +NaNB Y ng’NC) dQ
—=5=0, (B4) a- G
dvg
thus int.pts. nodes
- VN4 L’ VNg+ N VEPNG) N
LG 2 ) G e
V> > “ VNAL"BVNBdR+J NaY, VENcNgdR e gl
A B R R [} 16x16
af afl i H H
_EJ NANgdR|=0. (B5) where the tgnsor@ij andLjj” given |n.Append|.x A rgduce
R to 2X2 matrices, and the shape function matrix is given by

Ni Ny Ny NgJO ... ... 0 ... oo 0 .o oo 0 ... ...
Nee| 0 o 0[N N Ng Ny} O ... ... 0 oo 0 .o (B8)
A= 0 .0 0 [Ny Na N3 Ny O ... ... 0|
0 0 o ... 0 | N N, N3 Ny

and the shape function derivative matki®, follows in the is constructed by assembling the element stiffness matrices

same form. and element mass matrices into global element and mass
The contribution of a single element to the right-handmatricesK;; andM;, for the entire device.

side of Eq.(B6) is referred to as the element mass matrix and

is constructed in a similar way &S, ;. The final finite ele-
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