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Lattice mismatch in epitaxial layered heterostructures with small characteristic lengths induces
large, spatially nonuniform strains. The components of the strain tensor have been shown
experimentally to affect the electronic properties of semiconductor structures. Here, a technique is
presented for calculating the influence of strain on electronic properties. First, the linear elastic
strain in a quantum dot or wire is determined by a finite element calculation. A strain-induced
potential field that shifts and couples the valence subbands in the structure is then determined from
deformation potential theory. The time-independent Schro¨dinger equation, including the
nonuniform strain-induced potential and a potential due to the heterostructure layers, is then solved,
also by means of the finite element method. The solution consists of the wave functions and energies
of states confined to the active region of the structure; these are the features which govern the
electronic and transport properties of devices. As examples, two SixGe12x submicron resonant
tunneling devices, a quantum wire with two-dimensional confinement and a quantum dot with
three-dimensional confinement, are analyzed. Experimentally measured resonant tunneling current
peaks corresponding to the valence subbands in the material are modeled by generating densities of
confined states in the structures. Size and composition-dependent strain effects are examined for
both devices. In both the quantum dot and the quantum wire, the strain effects on the wave functions
and energies of confined states are evident in the calculated densities of confined states in the
structures, which are found to be consistent with experimentally measured tunneling current/voltage
curves for resonant tunneling diodes. ©1998 American Institute of Physics.
@S0021-8979~98!06419-6#

I. INTRODUCTION

Epitaxially grown semiconductor heterostructures often
consist of materials with lattice parameters that are mis-
matched by as much as several percent. For thin films of
large lateral extent, these strains are spatially uniform and the
effects are well understood. However, structures of relatively
small lateral extent, having distinctive geometric features
and bounded by free surfaces, are characterized by strains
that are highly nonuniform. The effects of nonuniform strain
on the electronic properties of semiconductor heterostruc-
tures have been observed experimentally, but the coupled
physical phenomenon has not been extensively modeled.1–4

The analysis of strain effects in a quantum mechanical model
of semiconductor devices has only recently been attempted
by Pryoret al.,5–7 Williamsonet al.,8 and Grundmannet al.,9

who calculate strain-induced potentials and wave functions
in quantum dots, and Zunger,10 who reviews the topic of
electronic structure in pyramidal semiconductor quantum
dots based on atomistic methods. Few studies have made
contact with experimental measurements; Pistolet al.11

model strain effects on the band gap in buried quantum dots,
which is consistent with photoluminescence data.

Strained semiconductor devices that are based on quan-
tum effects, particularly charge confinement in one or more
spatial dimensions, underlie a potentially significant technol-
ogy. Much can be learned about quantum effects by studying
the class of devices based on resonant tunneling of carriers

from an emitter region, into a quantum well, and then into a
collector region. The material combinations in these devices
and their geometrical features, including the layered struc-
ture and the free surfaces, lead to complicated mechanical
strain fields. Because the sequential tunneling of carriers is a
simple phenomenon governed by the spectrum of available
states in the quantum well, and because the devices are ex-
tremely small and the operating temperatures are low, it is
likely that the effects of strain on the electronic and transport
properties can be represented quantitatively through model-
ing.

Calculations of elastic strain fields in semiconductor
structures are well suited for the finite element method,
which is a common tool in continuum mechanics.2,12 In the
technique presented here, the finite element calculation of the
strain in a device is made using a general purpose structural
mechanics finite element package.13 However, the use of the
finite element method~FEM! in quantum mechanics, which
is reviewed by Linderberg,14 is much less common. Models
of semiconductor devices by means of the FEM have been
proposed by a number of authors for one- and two-
dimensional problems. Several FEM models are available for
one-dimensional resonant tunneling structures, which in-
clude the effects of arbitrary potential profiles due to layered
composition.15–17Chen18 models a one-dimensional resonant
tunneling diode using the FEM and calculates a current–
voltage curve based on a quantum hydrodynamic model.
Electron wave functions and band structures for two-
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dimensional quantum wires or quantum dots are analyzed
using FEM by a number of investigators.19–25 Tsuchida and
Tsukada26 calculate the electronic structure of a perfect Si
lattice using a three-dimensional FEM formulation. While
some recent models for strain effects have used finite differ-
ence methods,5–9 no three-dimensional FEM quantum me-
chanical calculations are reported, to the best of our
knowledge.

The finite element method is well suited for finding ap-
proximate solutions of boundary value problems for partial
differential equations in finite domains, especially if the~un-
known! exact solution is a minimizer of a total energy func-
tional. Both the stress boundary value problem and the quan-
tum mechanical boundary value problem in the present study
are of this type. The central idea of the method is that an
unknown continuous field in the domain is represented ap-
proximately in terms of its values at discrete points~nodes!
within the domain; the goal is to determine optimal values
for these nodal quantities. The domain is covered with areas
~in two dimensions! or volumes~in three dimensions! whose
boundaries are defined geometrically by the nodes; these ar-
eas or volumes are the elements. Fields are defined within
each element in terms of the values of the nodal quantities on
its boundary by means of a suitable interpolation scheme.
With the complete field defined in terms of the nodal quan-
tities, the total energy can be expressed in terms of the global
vector of nodal quantities. Imposition of the condition that
the actual values of the nodal quantities must render the total
energy a minimum leads to a system of algebraic equations
for these values. The method is ideally suited for numerical
analysis by computer. In general, it is convergent as nodal
spacing diminishes for elliptic partial differential equations
which have unique solutions.27 It should be noted that the
method is of far broader applicability than is implied by
these introductory comments.

In this work, a finite element model is used to analyze
both the continuum mechanics and the valence-band quan-
tum mechanics of a strained semiconductor device. The

strain field is shown to affect the performance of the device.
The model is used to analyze devices studied experimentally
by Akyüz et al.2 and Lukeyet al.,4 who show the effects of
nonuniform strain on the valence-band resonant tunneling

FIG. 1. Schematics of the quantum wire and quantum dot. The row-shaped
quantum wire~Ref. 4! has widthw and extends a distance much larger than
w in the ~010! direction. The cylindrical quantum dot~Ref. 2! has diameter
d.

FIG. 2. Finite element mesh used to calculate strain in the quantum wire.
Since the strain is symmetric laterally and vertically about the center axes of
the device, it is possible to model one quarter of the cross section of the
structure only. The mesh for this region, shown on the left, is very highly
refined in the active region. A portion of the refined mesh near the edge of
the active region is shown on the right.

FIG. 3. Measures of strain in the quantum wire.~a! Vertical extensional
component of strain (ezz) in the upper half of the quantum wire, from the
center to the edge. The bottom two layers are the center of the quantum well
layer, and the upper barrier layer.~b! Radial extensional component of strain
(e rr ) in the center of the well layers of three different wires. The strain is
uniform near the center~left!, but highly nonuniform near the edge~right!.
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current versus voltage characteristics of SixGe12x quantum
wires and quantum dots, shown schematically in Fig. 1. The
main features of the model are described in Sec. II; these
include the strain calculation, the treatment of the strain ef-
fects by deformation potential theory, and the quantum me-
chanical model. The finite element formulation for the two-
or three-dimensional Schro¨dinger equation incorporating va-
lence subband coupling and the nonuniform potential is out-
lined in Sec. III. The results of the calculations for the reso-
nant tunneling structures are discussed in Sec. IV, and
comparisons are made between the calculations and the
available experimental results.

II. CONTINUUM AND QUANTUM MECHANICAL
MODELS

The analysis of a strained semiconductor heterostructure
is divided into three calculations. First, a linear elastic finite
element calculation is made to determine the strain field,
which is a function of the composition and the geometry of
the structure. Second, the strain-induced potential field is cal-
culated using deformation potential theory. Third, the time-
independent Schro¨dinger equation including the strain-
induced potential is solved numerically by means of the
finite element method to obtain the spectrum of energies and
wave functions of available states.

A. Strain field calculation

The strain field due to the constraint of epitaxy associ-
ated with the mismatched lattice parameters of the hetero-
structure layers is determined within the framework of linear
elasticity theory. The structure is discretized spatially with a
mesh, which is more refined near free surfaces and in regions
where the mismatch between adjacent layers is larger. The
finite element mesh used for a strain calculation in the reso-
nant tunneling diode quantum wire is shown in Fig. 2. The
mismatch condition is imposed in the finite element calcula-
tion by prescribing in each layer a uniform stress-free dila-
tation that is proportional to the bulk lattice parameter of the

material in that layer. Continuity of displacements is required
across the layer interfaces; it is this constraint which gives
rise to stress. The outer surfaces are considered to be traction
free, implying that certain components of the stress tensor
vanish, and the material is allowed to relax until it reaches an
equilibrium configuration. Thus, using a standard structural
mechanics finite element program,13 the complete state of
stress, strain, and displacement is determined throughout the
device. Strain components are shown in Fig. 3 for the reso-
nant tunneling diode quantum wire. Strain is a tensor quan-
tity, and its components show significant variation with po-
sition throughout the device. In smaller devices, the strain is
more nonuniform due to the pervasive effect of relaxation at
the free surfaces.

B. Strain-induced potential

The components of strain induce a potential field that
affects the wave functions and energies of the charge carriers
in an otherwise perfect crystal. From first-order perturbation
theory, the strain-induced potential that affects wave func-
tions in subbandsa and b is formed from the tensor
product28

Ve
ab~r !5Di j

abe i j ~r !, ~1!

where r is an arbitrary position vector,e i j (r ) is the strain
tensor field, andDi j

ab is the deformation potential tensor for
subbandsa and b, which consists of components derived
experimentally. The indicesi j range over the coordinate di-
rections. For the SixGe12x material combination, the
valence-band electronic properties are dominated by the
heavy-hole and light-hole subbands, so theab basis includes
the heavy-hole~HH! subbands denoted byu3/2,63/2&, and
the light-hole ~LH! subbands denoted byu3/2,61/2&. The
split-off subbands~SO! are ignored because the separation
energy is considered to be large enough so that coupling
effects can be neglected. The potential equation can be writ-
ten as
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11~r !e i j (r ) Di j

12~r !e i j (r ) Di j
13(r )e i j (r ) Di j

14(r )e i j (r )

Di j
21(r )e i j (r ) Di j

22(r )e i j (r ) Di j
23(r )e i j ~r ! Di j

24(r )e i j (r )

Di j
31(r )e i j (r ) Di j

32(r )e i j (r ) Di j
33(r )e i j (r ) Di j
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Di j
41(r )e i j (r ) Di j

42(r )e i j (r ) Di j
43(r )e i j (r ) Di j

44(r )e i j (r )

D , ~2!

where the termsDi j
ab are the deformation potential tensors

which range over the spatial dimensionsi and j. The defor-
mation potential tensors contain material constants, which
vary spatially as the composition varies in the device; values
of these constants for a wide range of materials are known
from experiments. The repeatedi j indices indicate the scalar
product~contraction over the product of second rank tensors!

between the deformation potential tensor and the strain ten-
sor. Details of theDi j

ab terms are given in Appendix A, along
with the material constants used in the calculations. Thus, for
a calculated strain tensor function of positione i j (r ), it is
possible to calculate the deformation potential function of
position Ve

ab(r ) to be included in the quantum mechanical
analysis.
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C. Quantum mechanical model

In resonant tunneling structures, tunneling currents are
determined by available quantized states for individual
charge carriers. The energies and wave functions of a single
carrier in the semiconductor structure are solutions of the
time-independent Schro¨dinger equation

Hk•p
ab ~r !Cb~r !1Vab~r !Cb~r !5ECa~r !, ~3!

where Ca(r ) is the wave function in subbanda, E is the
energy,Hk•p

ab (r ) is thek•p Hamiltonian operator, andVab(r )
is a potential function of position.

The k•p perturbation method is used to model the me-
dium. Using this technique, there is a tensor function for the
effective mass associated with each subband, and there are
k•p terms coupling the effective masses in different sub-
bands. Written in the same form as Eq.~2! the Hamiltonian
is
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where theLi j
ab tensors on the diagonal of the matrix are the

effective-mass tensors for each subband, and the off-diagonal
Li j

ab tensors introduce ak•p coupling of subbands. Like the
terms in the deformation potential tensors, the components of
Li j

ab contain material constants, and thus, vary spatially
throughout the device. The exact forms of theLi j

ab tensors,
which come from the Luttinger–Kohn Hamiltonian, are
given in Appendix A.

The deformation potential and effective-mass material
constants in Eqs.~2! and ~4! are functions of the local com-
position of the device. Values for the constants in each layer
are given by linear interpolation of the material constants
associated with each of the pure elements composing that
layer.

The nonuniform potentialVab(r ) consists of contribu-
tions from two sources and is given by

Vab~r !5Vc
ab~r !1Ve

ab~r !, ~5!

whereVc
ab(r ) is due to the valence-band alignment of mate-

rial at a given position in the device, andVe
ab(r ) is the

strain-induced potential given in Eq.~1!. The strain-induced
potentialVe

ab(r ), like the components of the strain tensor, is
in general nonuniform in both the lateral directions and the
vertical direction in the structure. The composition-based
band offset potentialVc

ab(r ) is nonuniform only in the
growth, or vertical direction in the structure. The total poten-
tial Vab(r ) is shown in Fig. 4 for a representative quantum
dot calculation.

III. FINITE ELEMENT TECHNIQUE FOR THE
SCHRÖDINGER EQUATION

A. Finite element formulation

The physical domain of the device is discretized into a
mesh of nodes and elements. Elements used for the quantum

wires and quantum dots are described in Appendix B. The
mesh extends to the free or insulated surfaces, which impose
an infinite potential on the wave function. The wave func-
tions and energies of the states localized in the active region
are insensitive to remote boundary conditions, i.e., condi-
tions at boundaries located a large distance away relative to
the active region size. The mesh is more refined in the active
region of the device, where large wave-function gradients are
expected.

The form of the Schro¨dinger equation to be solved on
the finite element mesh is obtained by minimizing the total
variation of the weak, or Galerkin form of the equation with
respect to the wave function. The minimum in variation with
respect to the wave function corresponds physically to a
minimum energy. Details of the complete variational formu-
lation of the finite element technique used here are included
in Appendix B; a general discussion of the variational for-
mulation of the finite element method is given by Strang and
Fix.27 The functional corresponding to the weak form of the
time-independent Schro¨dinger equation with a nonuniform
potential~3! is given by

P~Ca!5E
R
¹CaLab¹CbdR

1E
R
CaVabCbdR2EE

R
CaCbdR, ~6!

where Ca, Lab, and Vab are functions of position in the
structure. The termLab is taken to be constant within each
element of the mesh. The fieldsCa, ¹Ca, and Vab are
represented by their nodal values. Values throughout each
element are determined by interpolation according to the par-
ticular shape functions that are adopted. Thus, for shape
functionsN(r ) used here, which are described in more detail
in Appendix B, these fields are written as
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Ca5 (
A51

all nodes

CA
aNA~r !,

~7!

¹Ca5 (
B51

all nodes

CB
a¹NB~r !, Vab5 (

C51

all nodes

VC
abNC~r !,

where the coefficients in the summations are the values of
the fields at the individual nodes. The functionalP(Ca) is
rewritten in a discrete form using Eqs.~7! and then mini-
mized with respect to the nodal values of the wave function,
CA

a . Integrals over the regionR of the entire structure are
replaced with integrals over individual element volumes
(Ve) and a summation over all elements, so that the finite
element form of the Schro¨dinger equation becomes

(
elemsF(

A
(
B

E
VeS ¹NALab¹NB1NANB(

C
VC

abNCDdVG
3CB

b5E (
elemsF(

A
(
B

E
Ve

NANBdVGCB
a , ~8!

which is a form ideally suited for computation.

This form of the Schro¨dinger equation can be much
more simply expressed as

Ki j C j5EMi j C j , ~9!

where the indicesi and j range over all nodal wave-function
degrees of freedom, and the repeated indices indicate a sum-
mation. Details of the assembly of the matricesK andM are
given in Appendix B.

B. Finite element solution

1. Energies and wave functions

The finite element expression of the Schro¨dinger equa-
tion ~9! is in the form of a generalized eigenvalue equation.
The problem hasna solutions, wheren is the total number of
nodes in the mesh anda is the number of subbands in the
quantum mechanical basis. The solutions consist of energies
E and wave functionsC. The mesh size used in the calcula-
tions reported here results in a very accurate determination of
the energiesE and good spatial resolution of the wave-
functions C, particularly for the lower-energy states. Con-
vergence of the method is found by comparing solutions for
meshes with successively decreasing nodal separation. Ele-
ment refinement is particularly important in the active region
of the device, where the wave-function gradients are largest.

Of the na eigenstates, some states can be found for
which the wave functionC~r ! or the probability density
uC(r )u2 is confined to the active region of the device. Ex-
amples of eigenstates confined to the quantum well layers of
the quantum dot are shown in Fig. 4. The lowest-energy
states of these confined eigenstates are the most relevant to
transport. For the example of the resonant tunneling diode,
sequential tunneling through the double barriers is possible
only when the tunneling carriers have energies equal to the
energies of the confined states in the quantum well. Thus,
over a range of applied biases, the excited carriers can access
the confined states and induce a tunneling current only at
certain resonances corresponding to the spectrum of eigen-
values given by the finite element solution.

The energy and wave-function solutions reflect the ef-
fects of strain, composition, and effective mass on the carri-
ers. The valence-band offset in adjacent layers imposes a
large relative potential on the charge carriers, which results
in confinement to the quantum well region of the device. The
strain-induced potential is considerably smaller than the
valence-band potential, but it also shifts the wave functions
spatially and energetically. Confined states corresponding to
valence subbands with higher effective masses occur at
lower energies.

2. Density of states

The density, with respect to energy, of states confined to
the active region of the device can be obtained directly from
the spectrum of eigenstates given in the finite element solu-
tion. This density of confined states is a real-space measure
of the electronic properties of the device. Effects due to
strain, composition, size, and device characteristics can be
seen in the density of confined states. For the example of the
resonant tunneling diode, the density of confined states can

FIG. 4. The potential field for the heavy-hole band in the strained quantum
dot, and corresponding representative eigenstates.~a! The axisymmetric po-
tential field is high in the barrier layers and low in the well layer, and
radially nonuniform throughout the device.~b! The lower-energy represen-
tative eigenstate shown on the left has sixfold angular quantization and is
localized in a ring-like region near the outer edge of the device. The higher-
energy representative state is confined to the center of the device, with
twofold quantization in the angular and vertical directions.

3718 J. Appl. Phys., Vol. 84, No. 7, 1 October 1998 Johnson et al.



be used to examine strain effects on the resonant tunneling
spectrum. A larger density of confined states with a given
energy increases the probability of resonant tunneling by car-
riers with the same energy. A high probability of tunneling at
a given energy is measured experimentally as a tunneling
current peak. Thus, the density of confined states can be used
to make contact with experimental data.

A Gaussian broadening technique can be used to calcu-
late a continuous density of confined states functionr(E).
The energyEi of each confined state is broadened by a nar-
row, normalized Gaussian distribution, and a summation
over all n states givesr(E) as

r~E!5(
i 51

n
1

2aAp
exp~2~E2Ei !

2/4a2!, ~10!

where a is a free parameter that controls the width of the
Gaussian distributions, and thus, the smoothness of the den-
sity of statesr(E). The parametera is chosen to bring out
the general features ofr(E); the broadening of each state is
larger than the typical separation of individual eigenstates,
but narrow enough to bring out features of the density of
states that are due to small groups of related eigenstates.
Typical values ofa are on the order of 1 meV.

IV. RESULTS AND COMPARISON TO EXPERIMENTS

A. The Quantum wire

1. Physical system

The quantum wire considered here is a long, row-
shaped, layered structure of fixed total heighth. The geom-
etry of the structure and the thickness and composition of
each layer, based on the experimental work of Lukeyet al.,4

are shown in Fig. 5. The middle layers of the device are
considered to be the active region, and include the quantum
well layer (Si0.78Ge0.22) and the two undoped barrier layers
~Si!. Surrounding the active region are strained (Si0.78Ge0.22)
emitter and collector regions; the thick outermost layers of
the device are Si. A range of widthsv are considered in
order to model size-dependent strain effects and to compare
results with experimental data.

The device operates by the sequential tunneling of
charge carriers from the doped region above the barrier layer,
into the quantum well layer, and then through the lower bar-
rier layer. Resonant tunneling spectroscopy is done experi-
mentally by applying a bias across the device and measuring
the current of tunneling carriers that is induced. A resonant
tunneling spectrum can be compiled by measuring the in-
duced currents associated with a range of applied biases. The
experimental result is a resonant tunnelingI (V) curve.

2. Strain field

The strain and displacement fields for this geometry are
two-dimensional since the constraining effect of the material
in the direction along the long axis of the wire imposes a
state of plane strain. The mesh is more refined in the active
region of the structure and near the traction free lateral sur-
faces, where the deformation is expected to be more nonuni-
form. Theezz component of strain~extensional strain in the
vertical direction! is shown in Fig. 3 in and near the active
region of the device. Figure 3 also shows thee rr component
of strain along the centerline of the quantum well layer for
structures with three different widths. The important features
are that the strain is a tensor valued function and that the
relaxing effect of the free surface and the multilayered com-
position of the structure lead to nonuniform strain compo-
nents.

3. Results of the quantum mechanical calculation

Solution of the quantum mechanical problem gives the
energies and wave functions of states confined to the quan-
tum well layer in the wire. From this spectrum of states, a
density of confined states is calculated. The density of con-
fined states for a narrow wire (w5250 nm) is shown in Fig.
6, representative eigenstates are shown in Fig. 7, and the

FIG. 5. Schematic of the quantum wire geometry and composition in the
active region. The 59 Å Si barriers surround the 33 Å Si0.78Ge0.22 quantum
well layer. An applied biasV induces a tunneling current in thez direction.

FIG. 6. Density of confined states in the strained quantum wire of width 250
nm. The two large peaks in the dashed curve show the calculated heavy-hole
and light-hole resonances without considering strain effects. Strain causes
the resonances to separate in energy and induces fine structure in the density
of confined states. States at points A~edge state! and B~light-hole state! are
shown in Fig. 7.
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density of confined states for wide and narrow wires are
compared in Fig. 8.

The results of the calculations are consistent with some
experimental observations of Lukeyet al. First, the strain
separates the resonant current peaks associated with the
heavy-hole and light-hole subbands, as shown in Fig. 6. The

calculation gives a peak separation of about 20 meV, which
would correspond to a bias shift of roughly 50 mV. The
experimentally measured separation is approximately 90
mV. However, it is important to note that the calculation
shown is for a wire aligned along a~100! crystalline axis.
The experiments of Lukeyet al. measured wires aligned
along a~110! axis, which would exhibit more sensitivity to
strain in the electronic properties due to the form of the de-
formation potential tensorDi j

ab , and thus, presumably a
wider strain-induced peak separation. The second character-
istic evident in Fig. 6 is the presence of additional fine fea-
tures in the density of states. Fine structure is also observed
experimentally in thew5250 nm device. An examination of
the states present over a range of energies shows that the fine
features in the density of states are due to groups of similar
states separated in energy by the influence of nonuniform
strain, as shown in Fig. 7.

The size dependence of the strain effect is demonstrated
in the densities of confined states for wires with widths of
250 and 900 nm in Fig. 8. The main feature is the increase in
the energy separation of the heavy-hole and light-hole peaks
as the wire width increases. This is due to the reduced effect
of free-surface strain relaxation in larger devices, where the
average strain values approach the bulk film mismatch
strains. In the smallest devices, the strain is relaxed over a
significant portion of the volume, so the average strain is
smaller and the energy separation between the heavy-hole
and light-hole peaks is smaller.

B. The quantum dot

1. Physical system

The quantum dot considered here is cylindrical in shape
and of fixed height. The features of this structure are based
on the experimental work of Zaslavskyet al.1 and Akyüz
et al.2 and are shown in Fig. 9 for a representative calcula-
tion. The three middle layers, which consist of the quantum
well (Si0.75Ge0.25) and the barriers~Si!, make up the active
region of the device. Surrounding the active region are the
emitter and collector regions (Si0.75Ge0.25), which have rela-

FIG. 7. Probability densities for two representative confined states with
energies denoted by A and B in Fig. 6. The four cross sections above show
the probability density associated with each of the four valence subbands for
a low-energy confined state. The wave function is of mixed type, and local-
ized near the edges of the structure due to strain relaxation. The four lower
cross sections show a higher-energy state that is predominantlyu3/2,11/2&
type. There is strong mixing with theu3/2,23/2& subband and there are edge
effects due to the relaxed free surfaces.

FIG. 8. Densities of confined states for two quantum wires of different
widths. The higher average strain in the wider device results in a larger
energy separation between heavy-hole and light-hole resonance peaks. The
heavy-hole peak is shown to be shifted by the strain more than the light-hole
peak.

FIG. 9. Geometry and composition of the quantum dot device~Ref. 2!. The
45 Å Si barriers surround the 35 Å Si0.75Ge0.25 well. The total height is 80
nm, and the diameterd varies. An applied biasV induces a tunneling current
in the z direction.
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tively low strain due to the outermost layers which are
graded in composition. A range of cylinder diametersd is
considered.

The quantum dot device operates on the same resonant
tunneling principle as the quantum wire. Carriers tunnel se-
quentially from the emitter region, through the upper barrier
into states in the quantum well, and then through the lower
barrier into the collector region. The experimentalI (V)
curve is a measure of the resonant tunneling spectrum.

2. Strain field

The stress, strain, and displacement fields are axisym-
metric for this geometry. The mesh used to calculate the
strain extends from the center axis of the structure outward,
with increasing refinement near the outer, traction-free sur-
face of the device, where the fields are expected to be more
nonuniform. Figure 10 shows theezz component of strain
~extensional strain in the axial direction!, ande rr , the exten-
sional strain along a radial line in the midplane of the quan-
tum well, for three different dot diameters. As in the case of

the quantum wire, the strain is very nonuniform, and the
extent of the nonuniformity increases in smaller structures.
This is due to the more significant effect of free-surface
proximity.

3. Results of the quantum mechanical calculation

For the three-dimensional quantum dot, a reduced quan-
tum mechanical basis is adopted in order to limit the total
number of degrees of freedom in the calculation. To model
only the lowest-energy heavy-hole states, it is sufficient to
consider a one-dimensional quantum mechanical basis where
only the u3/2,13/2& band is examined, but it is still possible
to consider an anisotropic effective mass.

FIG. 10. Measures of strain in the quantum dot.~a! Vertical extensional
component of strain (ezz) in the upper half of the quantum dot, from the
center to the edge. The bottom two layers are the center of the quantum well
layer, and the upper barrier layer.~b! Radial extensional component of strain
(e rr ) in the center of the well layers of three different dots. The strain is
uniform near the center~left!, but highly nonuniform near the edge~right!.

FIG. 11. Densities of heavy-hole confined states for a range of quantum dot
diameters. The variation in average strain levels results in the shifting of the
peaks for dots of different sizes. The energy shift corresponds to the bias
shift measured by Zaslavskyet al. ~Ref. 1!.

FIG. 12. The effect of strain-induced lateral confinement on the density of
confined states. The features of the density of confined states are due to
groups of eigenstates with similar lateral quantization.
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Two significant results compare favorably to the experi-
ments of Zaslavksyet al.1 and Akyüz et al.2 First, as seen in
Fig. 11, there is a size dependence of the strain effect on the
resonant energies that is similar to the effect in the quantum
wires. In larger diameter devices, the average strain is higher
because free-surface relaxation is less significant, so the peak
is shifted further from an idealized case without strain.

Second, in the smallest devices, there are additional fine
features in the density of states that are shown in Fig. 12 to
be the result of the influence of nonuniform strain. In agree-
ment with the suggestion of Akyu¨z et al.,2 it is evident that
the relaxed strain near the lateral surface leads to low-energy
ring-like heavy-hole states. The strain-induced energy shift-
ing of groups of states produces features in the density of
confined states that are consistent with theI (V) curves for
devices of the same size. Figure 13 shows a calculated den-
sity of confined states plot and a measuredI (V) curve for a
d5250 nm quantum dot with 10 meV on the energy axis
equal to 25 mV on the bias axis. Many of the features of the
I (V) curve are predicted qualitatively in the density of con-
fined states curve, including fine structure below and above
the main heavy-hole resonance energy. However, the density
of confined states is not equivalent to the resonant tunneling
current; the calculation does not consider some important
physical effects, most notably the roughly linear background
current in theI (V) relationship.

V. CONCLUSIONS

A finite element technique is presented here which al-
lows for the calculation of strain effects on the electronic and
transport properties of strained quantum wires and dots. The
approach is similar to some recent work as it is based on a

simplified quantum mechanical model,5–9 but the flexibility
of meshing and the low computational cost of the finite ele-
ment method offer easy access to results which can be com-
pared to experimental data.

The technique is used to examine mismatch strain effects
in quantum wires and quantum dots that operate on a simple
single carrier sequential tunneling effect. Strain effects are
shown to explain several reported trends in experimental
data. In particular, two features of the mismatch strain in the
devices have strong effects on the calculated electronic and
transport properties. First, the average effect of the strain is
to separate the resonant energy peaks associated with the
individual valence subbands in the material. In larger de-
vices, the strain is less relaxed by the free surfaces, so the
HH–LH subband energy separation is larger. Second, strain
nonuniformity in the devices is responsible for fine structure
in the resonant tunneling current peaks. This effect is the
source of low-energy ring-like states that are found in the
small cylindrical quantum dots, and the edge states found in
quantum wires over a range of sizes.

The main weaknesses in the method are in the simplified
quantum mechanical model. The real-space calculation is
based on ak-space material model that is accurate neark
50. The resonant tunneling model assumes ballistic trans-
port of a single charge carrier, and contact is made with
experiments in only an approximate way. A linear elastic
constitutive model provides a good approximation for the
strain, although the approach has limitations for such small,
highly strained structures.29 Finally, the strain effect is
treated as a linear perturbation to a perfect crystal Hamil-
tonian, so the fully coupled nature of strain and electronic
properties through the chemical bonding is not considered.
However, the technique shown here is a promising, compu-
tationally inexpensive way to determine strain effects on
electronic properties in semiconductors. The means to over-
come the noted shortcomings are under development.
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FIG. 13. Fine structure in the density of confined states in thed5250 nm
quantum dot~Ref. 2!. The calculated density of confined states is consistent
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calculation does not account for the roughly linear background current that
is observed experimentally.
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APPENDIX A

The strain-induced potentialVe
ab(r ) is given by

Ve
ab~r !5

u 3
2,1

3
2&

u 3
2,2

3
2&

u 3
2,1

1
2&

u 3
2,2

1
2&

u 3
2,1

3
2& u 3

2,2
3
2& u 3

2,1
1
2& u 3

2,2
1
2&

S Di j
11(r )e i j (r ) Di j

12(r )e i j (r ) Di j
13(r )e i j (r ) Di j

14(r )e i j (r )

Di j
21(r )e i j (r ) Di j

22(r )e i j (r ) Di j
23(r )e i j (r ) Di j

24(r )e i j (r )

Di j
31(r )e i j (r ) Di j

32(r )e i j (r ) Di j
33(r )e i j (r ) Di j

34(r )e i j (r )

Di j
41(r )e i j (r ) Di j

42(r )e i j (r ) Di j
43(r )e i j (r ) Di j

44(r )e i j (r )

D , ~A1!

where each componentDi j
ab(r ) of the matrix for fixedab forms a scalar product with the strain tensore i j (r ) through

summation overi and j. And similarly, thek•p Hamiltonian given by Luttinger and Kohn takes the form

Hk•p
ab ~r !5

u 3
2,1

3
2&

u 3
2,2

3
2&

u 3
2,1

1
2&

u 3
2,2

1
2&

u 3
2,1

3
2& u 3

2,2
3
2& u 3

2,1
1
2& u 3

2,2
1
2&

S Li j
11(r )¹ i j

2 Li j
12(r )¹ i j

2 Li j
13(r )¹ i j

2 Li j
14(r )¹ i j

2

Li j
21(r )¹ i j

2 Li j
22(r )¹ i j

2 Li j
23(r )¹ i j

2 Li j
24(r )¹ i j

2

Li j
31(r )¹ i j

2 Li j
32(r )¹ i j

2 Li j
33(r )¹ i j

2 Li j
34(r )¹ i j

2

Li j
41(r )¹ i j

2 Li j
42(r )¹ i j

2 Li j
43(r )¹ i j

2 Li j
44(r )¹ i j

2

D , ~A2!

where the each of the matrix componentsLi j
ab(r ) for fixed

ab form a scalar product with the operator¹ i j
2 . The compo-

nentsDi j
ab(r ) andLi j

ab(r ) have very similar form. The defor-
mation potential componentsDi j

ab(r ) are

Di j
11~r !5Di j

22~r !5F a1b/2 0 0

0 a1b/2 0

0 0 a2b
G ,

Di j
33~r !5Di j

44~r !5F a2b/2 0 0

0 a2b/2 0

0 0 a1b
G ,

Di j
13~r !5Di j

31* ~r !52Di j
24* ~r !52Di j

42~r !

5F 0 0 2 id/2

0 0 2d/2

2 id/2 2d/2 0
G , ~A3!

Di j
14~r !5Di j

23* ~r !5Di j
32~r !5Di j

41* ~r !

5F A3

2
b 2 id/2 0

2 id/2 2
A3

2
b 0

0 0 0

G ,

Di j
12~r !5Di j

21~r !5Di j
34~r !5Di j

43~r !5F 0 0 0

0 0 0

0 0 0
G .

The Hamiltonian componentsLi j
ab(r ) can be obtained by

making the substitutions (\2/2m0)g1↔a, (\2/m0)g2↔b,
and (A3\2/m0)g3↔d into the expressions for the compo-
nents Di j

ab(r ), where g1 , g2 , and g3 are the Luttinger–

Kohn parameters. Values for the deformation potential con-
stants and the Luttinger–Kohn parameters for Si and Ge are
given below. Values for alloys of Si and Ge are interpolated
from values for the bulk materials.

a ~eV! b ~eV! d ~eV! g1 g2 g3

Si 2.1 21.5 23.4 4.29 0.34 1.45

Ge 2.0 22.2 24.4 13.4 4.24 5.59

APPENDIX B

To obtain the finite element form of the Schro¨dinger
equation, the physical region is divided into elements, which
are taken here to be four-noded quadrilaterals for the two-
dimensional quantum wire and eight-noded bricks for the
three-dimensional quantum dot. The wave-functionCa,
wave-function gradient“Ca, and potentialVab are ex-
pressed in terms of discretized values at the nodes, and val-
ues within the elements are determined by linear interpola-
tion using linear shape functionsN(r ). A group of
quadrilateral elements and the linear shape function for an
associated node are shown in Fig. 14.

FIG. 14. Elements, nodes, and a representative shape function in the two-
dimensional finite element formulation.
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The form of the Schro¨dinger equation to be solved is

Lab~r !¹2Cb~r !1Vab~r !Cb~r !5ECa~r !. ~B1!

The weak form of the equation is obtained by multiplying by
C~r ! and integrating over the volume of the body. The first
term is integrated by parts, and the functional corresponding
to the weak form is given by

P~Ca!5E
R
¹CaLab¹CbdR

1E
R
CaVabCbdR2EE

R
CaCbdR. ~B2!

The spatially varying fields are then discretized using the
shape functionsN(r ) to get

P(CA
a)5(

A
(
B

F E
R
CA

a¹NALabCB
b¹NBdR

1E
R
CA

aNA(
C

VC
abNCCB

bNBdR

2EE
R
CA

aCB
bNANBGdR. ~B3!

The total variation of the functionalP(CA
a) is then mini-

mized with respect to the nodal values of the wave-function
CB

b so that

dP~CA
a!

dCB
b 50, ~B4!

thus

CA
a(

A
(
B

F E
R
¹NALab¹NBdR1E

R
NA(

C
VC

abNCNBdR

2EE
R
NANBdRG50. ~B5!

Replacing integrals over the regionR with integration over
individual element volumes (Ve) and a summation over all
elements, the final finite element form of the equation be-
comes

(
elemsF(

A
(
B

E
VeS ¹NALab¹NB

1NANB(
C

VC
abNCDdVGCB

b

5E (
elemsF(

A
(
B

E
Ve

NANBdVGCB
a . ~B6!

The contribution of a single element to the left-hand side of
the equation is given by the element stiffness matrix. The
integration over the element is done numerically at a set of
quadrature points. The construction of an element stiffness
matrix for the case of two spatial dimensions and a four
subband quantum mechanical basis is as follows:

~B7!

where the tensorsDi j
ab andLi j

ab given in Appendix A reduce
to 232 matrices, and the shape function matrix is given by

~B8!

and the shape function derivative matrix¹NA follows in the
same form.

The contribution of a single element to the right-hand
side of Eq.~B6! is referred to as the element mass matrix and
is constructed in a similar way askab

e . The final finite ele-
ment matrix form of the Schro¨dinger equation, given by

Ki j C j5EMi j C j , ~B9!

is constructed by assembling the element stiffness matrices
and element mass matrices into global element and mass
matrices,Ki j andMi j , for the entire device.
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2C. D. Akyüz, A. Zaslavsky, L. B. Freund, D. A. Syphers, and T. O.
Sedgewick, Appl. Phys. Lett.72, 1739~1998!.

3P. Gassot, U. Gennser, D. M. Symons, A. Zaslavsky, D. A. Gruztmacher,
and J. C. Portal, Physica E~to be published!.

3724 J. Appl. Phys., Vol. 84, No. 7, 1 October 1998 Johnson et al.



4P. W. Lukey, J. Caro, T. Zijlstra, E. van der Drift, and S. Radelaar, Phys.
Rev. B57, 7132~1998!.

5C. Pryor, M.-E. Pistol, and L. Samuelson, Phys. Rev. B56, 10 404~1997!.
6C. Pryor, Phys. Rev. B57, 7190~1998!.
7C. Pryor, http://xxx.lanl.gov/abs/cond-mat/9801225
8A. J. Williamson, A. Zunger, and A. Canning, http://xxx.lanl.gov/abs/
cond-mat/9801191

9M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B52, 11 969
~1995!.

10A. Zunger, MRS Bull.23, 15 ~1998!.
11M.-E. Pistol, N. Carlsson, C. Persson, W. Seifert, and L. Samuelson, Appl.

Phys. Lett.67, 1438~1995!.
12T. J. Gosling and L. B. Freund, Acta Mater.44, 1 ~1996!.
13ABAQUS, Version 5.5, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI

02860~1995!.
14J. Linderberg, Comput. Phys. Rep.6, 209 ~1987!.
15K. Nakamura, A. Shimizu, M. Koshiba, and K. Hayata, IEEE J. Quantum

Electron.25, 889 ~1989!.
16A. Zhao, S. R. Cvetkovic, and Z. A. Yang, Opt. Quantum Electron.25,

845 ~1993!.

17T. L. Li and K. J. Kuhn, J. Comput. Phys.115, 288 ~1994!.
18 Chen, Comput. Math. Appl.31, 17 ~1996!.
19K. Kujima, K. Mitsunaga, and K. Kyuma, Appl. Phys. Lett.55, 882

~1989!.
20D. J. Kirkner, C. S. Lent, and S. Sivaprakasm, Int. J. Numer. Methods

Eng.29, 1527~1990!.
21Z. Wu and P. P. Ruden, J. Appl. Phys.74, 6234~1993!.
22Y. Wang, J. Wang, and H. Guo, Phys. Rev. B49, 1928~1994!.
23T. Inoshita and H. Sakaki, J. Appl. Phys.79, 269 ~1996!.
24J. C. Yi and N. Dagli, IEEE J. Quantum Electron.31, 208 ~1995!.
25T. Inoshita and H. Sakaki, J. Appl. Phys.79, 269 ~1996!.
26E. Tsuchida and M. Tsukada, Phys. Rev. B52, 5573~1995!.
27G. Strang and G. J. Fix,An Analysis of the Finite Element Method

~Prentice-Hall, Englewood Cliffs, NJ, 1973!, pp. 8 and 41.
28J. Singh, Physics of Semiconductors and Their Heterostructures

~McGraw-Hill, New York, 1993!, p. 228.
29C. Pryor, J. Kim, L. W. Wang, A. Williamson, and A. Zunger, J. Appl.

Phys.83, 5 ~1998!.

3725J. Appl. Phys., Vol. 84, No. 7, 1 October 1998 Johnson et al.


