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Starting with a double-barrier p-Si/Sij75Geg,s resonant tunneling heterostructure, we fabricated
sub-100-nm elliptical quantum dots. Sidewall strain relaxation in the Si,Ge,_, layer induces a lateral confining
potential that quantizes heavy hole (HH) and light hole (LH) states in the SiGe quantum well, leading to fine
structure in the HH-LH (V) resonant tunneling curves at low temperature. In this paper, we present the
magnetotunneling /(V,B) characteristics of heavy holes and light holes in magnetic fields B parallel to the
tunneling current. From the evolution of the fine structure, we observe the competition between the strain-
induced lateral confinement potential and the magnetic confinement, from which we infer lateral potentials of
HH and LH different from those of previously studied cylindrically symmetric dots. The experimental data are
in qualitative agreement with inhomogeneous strain-induced HH and LH potential obtained via a full three-

dimensional finite-element strain simulation.

DOI: 10.1103/PhysRevB.73.115319

I. INTRODUCTION

Advances in microfabrication techniques have made it
possible to fabricate deep submicrometer double-barrier
resonant tunneling (RT) diodes exhibiting lateral quantiza-
tion and three-dimensionally confined states in the quantum
well. Lateral quantization was first observed in small III-V
quantum dots,'=3 where the lateral potential is determined by
the Fermi level pinning at the GaAs surface. In the
Si/Si,Ge,_, RT diodes we have been studying, the lateral
surface is passivated with SiO,, but an additional source of
lateral potential arises from inhomogeneous strain in the
Si,Ge;_, layers.

In large devices, the lattice mismatch between Si and
Si,Ge;_, introduces biaxial strain, and as long as the strained
Si,Ge;_, layer thickness is kept below the critical thickness
het the Si,Ge,_, remains homogeneously strained. The
strain lifts the degeneracy of the heavy-hole (HH) and
light-hole (LH) valence band and reshapes the HH and
LH dispersions.” When a quantum dot or wire is etched
out of the strained Si/Si,Ge;_, heterostructure, the biaxial
strain can relax by sidewall expansion. This has been
demonstrated by Raman spectroscopy® and resonant tunnel-
ing measurements.”” Since the HH-LH subband energy
separation contains a large strain-induced contribution, the
HH and LH peak spacing is an experimentally accessible
indication of the strain in the structure. As the lateral size of
the structures decreases, an unambiguous reduction of the
HH-LH energy separation corresponding to strain relaxation
has been observed.”® As the size of the dot is reduced fur-
ther, additional fine structure is observed in the HH and LH
resonant peaks, consistent with lateral quantization due to
nonuniform strain.%® The HH fine structure is generally
stronger, because the states arising from the HH subband
have a lighter in-plane mass® and hence are more strongly
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quantized by the lateral inhomogeneous strain-induced po-
tential. The observed changes in the HH I(V) peak have been
compared to a finite-element simulation of the strain and its
effect on the electronic states in a cylindrically symmetric
quantum dot.®!° The radially symmetric two-dimensional
simulations'® predicted nonmonotonic radial strain distribu-
tions, and in sufficiently small quantum dots, the confine-
ment of the ground state is a ringlike region around the pe-
rimeter. This surprising prediction was consistent with the
subsequently observed ¢/ ¢, periodicity of fine structure in
the RT peaks in small magnetic fields (where ¢ is the en-
closed magnetic flux and ¢y=h/e is the flux quantum), the
signature of a quantum ring.!!

Since strain relaxation is determined not only by the size,
but also by the geometry, we have fabricated sub-100-nm
elliptical quantum dots to investigate the resulting strain-
induced lateral potential by observing the fine structure in the
HH and LH RT (V) peaks and their evolution in magnetic
fields B parallel to the tunneling direction. We observe partial
quenching of the fine structure by B>5 T that is consistent
with the competition between the strain-relaxation-induced
lateral potential confinement and magnetic confinement. Un-
like the cylindrical quantum dots, we do not observe mag-
netic flux periodicity in the HH I(V) fine structure. Carrying
out a full three-dimensional simulation of the strain relax-
ation in elliptical quantum dots, we get a strain relaxation
that is different from that of the cylindrical quantum dot. The
potential induced by this elliptical strain relaxation does not
confine the ground state of the HH and LH to a ring around
the perimeter, providing a qualitative explanation for the ab-
sence of the quantum ring signature in the HH I(V) data. Our
numerical analysis of the density of states in the elliptical dot
with and without B is consistent with the observed partial
quenching of the I(V) fine structure.

©2006 The American Physical Society
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II. EXPERIMENTAL TUNNELING RESULTS
IN THE ELLIPTICAL QUANTUM DOT
WITHOUT MAGNETIC FIELD

The submicrometer elliptical quantum dot we measured
was fabricated from strained p-Si/Si,Ge,_, double-barrier
RT material.® The nominally undoped double-barrier active
region consists of a 35 A Sij55Ge »5 quantum well confined
by two 50 A Si barriers. On both sides of the double-barrier
region, there are 100 A undoped Sij-sGe s spacer layers,
followed by 100 A regions in which the Ge content is lin-
early graded to zero. The doping is turned off (on) in the
middle of these graded regions below (above) the active re-
gion, leading to nominally symmetric undoped 150 A mate-
rial on both sides of the structure. However, due to the un-
intentional diffusion of dopants with the growth front, the
real undoped spacer on the substrate side is expected to be
smaller than on the top. Electron-beam lithography was used
to define the elliptical Ti/Al top contact of the dot, and re-
active ion etching was utilized to fabricate a deep submi-
crometer pillar, followed by SiO, passivation, polishing, etch
back, and deposition of the large contact pad.

The I(V) characteristics of a large device (nominal diam-
eter D=1.5 um) measured at 7=1.7 K and B=0 are shown
in Fig. 1(a). In this large device, we observe smooth RT
current peaks corresponding to the usual resonant tunneling
into two-dimensional subbands arising from the heavy-hole
and light-hole branches of the dispersion.'> Given the
double-barrier heterostructure parameters, a self-consistent
calculation of the potential distribution over the device was
used to convert the applied bias V to the alignment of the
occupied emitter states with the subbands in the quantum
well. A complete self-consistent conversion must take into
account the formation of the accumulation and depletion lay-
ers in the emitter and collector electrodes, including the po-
tential drop over the undoped spacer region in the collector
electrode (as well as the space charge in the well created by
the tunneling carriers).'>'* Given a calculation of the HH
and LH two-dimensional (2D) subbands in the SiGe quan-
tum well, the expected bias positions of the threshold Vi and
peak V,, of the HH and LH RT resonances can be determined
from E and k| conservation:'3 Vir occurs when the HH or LH
subband aligns with Ef in the emitter, V|, occurs when HH or
LH approximately aligns with the valence band edge in the
emitter valence band. Figure 1(b) shows the HH and LH 2D
subband energies and their in-plane dispersions in our
Si,Ge,_, quantum well, referred to the Fermi level Ey in the
emitter at zero bias. The calculation is shown for both full
biaxial strain [corresponding to large structures, such as the
D=1.5 um device of Fig. 1(a)] and partially relaxed strain
(which will be needed later, when we discuss the small el-
liptical quantum dot). The 6 X 6 effective-mass Hamiltonian
used for the calculation,'®!'? includes directional anisotropy,
leading to different in-plane dispersions in (10) and (11) di-
rections. The strong nonparabolicity and anisotropy pre-
dicted by the calculated dispersion curves in Si,Ge;_, quan-
tum wells have been observed experimentally for large k , .2
By combining the self-consistent potential distributions with
the HH and LH 2D energy subbands calculations at full
strain of Fig. 1(b), we obtain the calculated Vi and Vp posi-
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FIG. 1. (Color online) (a) Smooth I(V) characteristics of a large
device with diameter D=1.5 um for both bias polarities. Arrows
show the calculated threshold and peak bias values for the HH and
LH peaks in both polarities. (b) Calculated HH and LH subbands
E(k ) dispersion at full strain (e=—1) and partially relaxed strain
(e=-0.4), corresponding to 60% strain relaxation, in the Si,Ge;_,
quantum well. The energy is referred to the Fermi level Ef in the
emitter.

tions for the RT tunneling peaks in both polarities, superim-
posed on the data in Fig. 1(a). The calculation assumes full
strain in the Si,Ge;_, well and the slight asymmetry in the
undoped spacer layers, due to the unintentional dopant mi-
gration mentioned previously. The agreement with the mea-
sured RT peak positions is very good, confirming the accu-
racy of the self-consistent conversion of applied bias V to
subband energy in the quantum well. The experimentally ob-
served asymmetry in the RT peak current magnitudes at posi-
tive and negative bias is likely due to a slight unintentional
asymmetry in the Si barrier thicknesses. Since the transmis-
sion coefficient is exponentially dependent on the barrier
thickness, taking the emitter barrier to be 50 A, as designed
and assuming the collector barrier to be slightly thicker at
55 A leads to the HH peak current ratio of ~1/3 in the
positive vs negative bias polarity, similar to the measured
I(V).

Figure 2(a) shows the scanning electron microscope
(SEM) micrograph of the Ti/Al top contact of the elliptical
quantum dot under study. The long axis is about 80 nm, and
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FIG. 2. (Color online) (a) SEM top contact micrograph of the
elliptical quantum dot under study; long axis is ~80 nm, short axis
is ~60 nm. (b) HH and LH /(V) tunneling peaks of the elliptical
quantum dot at B=0 and 7=1.7 K, together with expanded
(25 X)) views of the HH peak and the dI/dV characteristics of the
LH peak. Arrows are used to point out the position of the LH peak
in the I(V) and dI/dV characteristics. (c) Expanded view of the HH
I(V) peak, and the corresponding dI/dV characteristics; arrows used
to point out the fine structure features. For comparison, the smooth
HH I(V) peak of the large D=1.5 um device of Fig. 1(a) is also
shown (dotted line).

short axis is about 60 nm. The geometry of the dot was made
intentionally elliptic by exposing two adjacent circular dots
in close proximity. Although the pillar etching process does
not produce perfectly vertical sidewalls, previous work® has
shown that the shape and size of the top contact are repro-
duced quite closely in the active region. The HH-LH (V)
curve of this small elliptical dot measured at 7=1.7 K and
B=0 is shown in Fig. 2(b). Both the HH and LH peaks have
acquired a fine structure. The fine structure in the LH peak is
weaker, so the corresponding dI/dV characteristic of the LH
peak is also shown. Since the LH peak lineshape is still fairly
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similar to the smooth I(V) of the large device in Fig. 1(a), we
can compare the currents and corroborate the diameter of
smaller dot—we obtain an approximate diameter of
~100 nm, in reasonable agreement with Fig. 2(a) given that
strain relaxation alters the effective tunneling barrier
heights,”>” and exact current scaling with area cannot be ex-
pected in the deep submicrometer regime.

The observed fine structure remains essentially unchanged
if the temperature is raised to 7=4.2 K, but is completely
quenched at 7=77 K as the thermal broadening becomes
larger than the energy separations of the confined HH in-
plane states. In order to minimize thermal broadening, all
measurements were carried out at 7=1.7 K. Also, since the
aim of this paper is to examine the effects of noncylindrical
geometry on strain relaxation as evidenced by the fine struc-
ture, we will first focus on the HH peak, where the fine
structure is stronger, although data on LH peak will also be
shown and analyzed.

An expanded view of the HH I(V) characteristics is
shown in Fig. 2(c), together with the corresponding dI/dV
characteristics. The fine structure features, shown by arrows,
are obtained by finding the steepest descending slopes in the
dI/ dV characteristics. We also plot the scaled HH I(V) curve
of the large device shown in Fig. 1(a) for comparison. Com-
pared with the smooth HH peak of the large device, the
threshold V1 has been shifted to higher bias, as expected
from strain relaxation in the Si,Ge,_, quantum well.”-'° The
fine structure is quasiperiodic with a period of ~10 mV, cor-
responding to ~2.5 meV in energy using a self-consistent
calculation of potential distribution over the active region.
Previous work on cylindrically symmetric submicron RT
dots from the same Si/Si,Ge,_, material correlated this fine
structure with lateral quantization due to inhomogeneous-
strain-induced potential.®!®!! In order to analyze this quasi-
periodic structure in this elliptical quantum dot, we used the
finite-element method in three dimensions to simulate the
corresponding potential profile in the quantum well, as de-
scribed in the next section.

III. STRAIN SIMULATION OF THE ELLIPTICAL
QUANTUM DOT BY FINITE-ELEMENT METHOD

Unlike the cylindrically symmetric quantum dots simu-
lated previously,'? the elliptical quantum dot requires a full
3D strain simulation.?! Since the Ge content of the Si,Ge;_,
layers used for our fabrication is nominally symmetric about
the midplane of the quantum well, only half of the structure
is modeled, as shown in Fig. 3(a), where the composition
profile of Ge in different layers is also shown. The cross-
section of the simulated pillar closely resembles the top con-
tact SEM picture of the dot, as shown in Fig. 2(a). The mesh
near the peripheral regions of barrier and well layers is re-
fined, as large strain gradients are expected in those regions.
The simulated remaining strain in the quantum well is shown
in Fig. 3(b), while the cross-sectional views of remaining
radial strain in the quantum well in X and Y directions are
shown in Fig. 3(c).
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FIG. 3. (Color online) (a) Model used to simulate the strain
relaxation in our quantum dot; only half of the structure is simu-
lated due to Ge content symmetry about the midplane of the SiGe
quantum well. (b) Strain profile by finite element simulation. In our
notation, full biaxial strain corresponds to e=-1, fully relaxed
strain is €=0. Regions A are the most strained regions; B is the
bottom of the ringlike region; C is the least strained region. (c)
Cross sections of the partially relaxed strain in the quantum well in
X and Y directions; points A,B,C are the same as in (b).

We estimate the in-plane confining potential for HH and
LH states by retaining only the radial &,, and &, components
that are most affected by strain relaxation (in previous cylin-
drically symmetric dot simulations,®!*!! we retained only
the radial component &,,). Strain relaxation in the quantum
well cannot only reduce the separation between the HH and
LH subbands in the quantum well, which has been demon-
strated by experiment,” but also increase the band gap Eg,’
hence affecting the valence band edge. These two effects
have been taken into account as follows. First, we calculate
the HH subband energy at k, =0 as a function of local
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FIG. 4. (Color online) By retaining only the radial &,, and &,,
components that are most affected by strain relaxation, calculated
HH and LH potential energies in the quantum well in X and Y
directions using the six-band Luttinger-Kohn Hamiltonian are
shown here. Points A,B,C are the same as in Figs. 3(b) and 3(c).

strain e,, and &, by the usual six-band Luttinger-Kohn
Hamiltonian.?? Second, since we know the energy separation
between HH and LH at each different local strain, based on
the calculated potential of HH, we can get the LH potential
by adding the energy separation to the HH potential. The
calculated potentials of HH and LH are shown in Fig. 4 for
two cross-sectional cuts through the elliptical dot. The zero-
point energy corresponds to the Fermi level Ef in the emitter,
where the strain relaxation is also taken from the finite-
element simulation. (Since the strain relaxes by sidewall ex-
pansion, the strained Si,Ge,_, layers relax more in the quan-
tum well than in the emitter. We approximate the average
strain relaxation in the emitter by 80% that of the well, a
value consistent with the calculated strain relaxation ~100 A
into the emitter.) From Figs. 3(b), 3(c), and 4, we find that
regions marked as A in Fig. 3(c), lying toward the perimeter
along the longer axis of the elliptical dot, are the lowest
potential regions for both heavy holes and light holes. Taking
the coordinates of the potential minimum in region A as
(x0,y0), as a first approximation we can use asymmetric
parabolic confinement in both directions to describe region
A. Above region A, which confines the ground state of the
lateral potential, we have a ringlike potential along the pe-
rimeter going through the minimum B (along the shorter axis
of the ellipse), whereas region C in the middle of the ellip-
tical dot corresponds to a potential hill—see Fig. 3(b). The
calculated energy difference between the HH potential mini-
mum points of regions A and B is ~8 meV, due to the geo-
metrical asymmetry of the elliptical dot. From this simula-
tion, we see that the ground state is confined to regions A on
the opposite sides of the long axis of the ellipse.

IV. CHARACTERIZATION OF THE STRAIN
CONFINEMENT BY MAGNETOTUNNELING
MEASUREMENTS

Previously, in cylindrically symmetric quantum dots, the
calculated inhomogeneous strain relaxation confined the HH
ground state to a quantum ring near the perimeter of the
device. Measurements of the HH peak fine structure in cy-
lindrically symmetric dots revealed a ¢/ ¢, periodicity in the
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energy of the fine structure features, where ¢ is the magnetic
flux enclosed in the ringlike orbit.!" Since the area of this
small elliptical quantum dot is known from Fig. 2(a), a simi-
lar confinement of the ground state to the perimeter of the
elliptical dot would result in a periodicity of ~1 T. We mea-
sured the HH I(V) characteristics under constant magnetic
field B=0-3 T with a step 0.1 T, small enough to resolve
such periodicity. No ¢/ ¢, periodicity of the fine structure is
observed. This is consistent with the confining potential due
to inhomogeneous strain relaxation in the elliptical quantum,
shown in Fig. 4. Unlike in the cylindrical quantum dot,"" the
~8 meV potential difference between minima A and B inter-
rupts the ringlike ground state around the perimeter. Due to
the interruption, holes will be scattered into fully confined
region A, preventing 1D quantum ring behavior (like the
¢/ ¢, periodicity in magnetotunneling spectroscopy that has
been observed in cylindrical quantum dots).!!

The HH I(V,B) curves in higher magnetic fields B paral-
lel to the tunneling direction z are shown separately in Figs.
5(a) and 5(b) for positive and negative bias polarities. In both
polarities I(V,B) characteristics with different B up to 10 T
have been shifted for clarity. The HH fine structure peak
positions of the positive polarity plotted against B are shown
in Fig. 5(c). We find that in both bias polarities, when B is
increased above approximately 5 T, the fine structure is par-
tially quenched: the number of fine structure peaks is re-
duced and some peaks tend to merge into each other. When
B=10T, the remaining fine structure is still quasiperiodic,
but with a much bigger period of ~20 mV in bias, corre-
sponding to ~5 meV in energy.

Another experimental check on the potential induced by
the strain relaxation in the quantum well is available by do-
ing magnetotunneling experiments on fine structure superim-
posed on the LH resonant tunneling peak, as shown in Fig.
6(a). The corresponding dI/dV characteristics are shown in
Fig. 6(b). From this figure, we can see that as B is increased
beyond 5 T, some fine structure has been quenched, which is
similar to the HH fine structure changing with B. Since the
LH confining potential induced by the strain relaxation in the
quantum well is similar to the HH potential, as shown in Fig.
4, it is not surprising that similar fine structure quenching at
high magnetic field is observed.

V. CALCULATION OF DENSITY OF STATES IN THE
WELL IN THE PRESENCE OF STRAIN RELAXATION
AND MAGNETIC FIELD

We explain the merging of peaks and increased fine struc-
ture period in high B by the interplay of the strain-induced
lateral confinement of Fig. 3(c) and the magnetic confine-
ment. As a first-order approximation, which allows for the
use of analytic solutions,?>?* we will treat the lateral confin-
ing potential of region A as parabolic, but with different
force constants corresponding to motion along long (X) and
short (Y) axes of the ellipse:

Lo L.
V(r) = @i = x)” + m @3y = yo)? (1)

where (xy,y,) is the potential minimum point of region A,
shown in Fig. 4. Under magnetic field in the z direction,
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FIG. 5. (Color online) HH I(V,B) characteristics of elliptical
quantum dot in forward bias (a) and reverse bias (b) under constant
B from 0 to 10 T with step 1 T parallel to the current. The I(V)
curves with different magnetic fields are offset vertically for clarity;
arrows are used to point out the fine structure positions. HH fine
structure positions in positive bias polarity are plotted against B in

(c).

choosing a gauge such that vector potential A=(0,Bx,0), the
Hamiltonian H in the plane becomes

H=

1 I .
Zm*{pi +[p, +eB(x - xo) I} + Em w%(x - x)°

1 .
+5m w3(y = yo)*. (2)

The resulting eigenenergies are given by?>?*

1 1
Eij=ﬁw+<i+5> +hw_<j+5> (3)

where
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2_ 2., 2. 2 I 2 2
20,= 0+ 0+ o, = [(0] — 05 + oz)c)2 + 4(1)20)0]1/2. (4)

The magnetization exhibits the superposition of large-period
(hw,) and small-period (Aw_) oscillations. We take the in-
plane effective masses that enter into Eqs. (1)—(4) from the
k=0 solutions of the 6 X 6 effective-mass Hamiltonian in
Fig. 1(b),'*-! taking an averaged strain e=—0.4 in the quan-
tum well according to the strain distribution shown in Fig.
3(c). The resulting in-plane effective masses for HH and LH
subbands are m"=0.26m, and m"=0.55m, respectively. For
the HH, we have fiw; ~8 meV and fw,~2.5 meV, whereas
hwc=4.5 meV for B=10T. Equation (4) then yields
hw,~9.5 meV and fiw_~2 meV. As a result, the smaller
energy separation fiw_ is reduced still further by B and may
not be resolvable given the finite energy broadening of the
states, quenching the structure in the density of states and
reducing the number of observed fine structure peaks in the
I(V,B) characteristics.

In order to lend further support to this mechanism of fine
structure quenching, we have calculated numerically the den-
sity of states in the lateral potential due to both inhomoge-
neous strain shown in Figs. 3(b) and 3(c) and the magnetic
field B by direct discretization of the Schrodinger equation.
With the in-plane heavy-hole effective mass m" =0.26m,,
corresponding to the averaged strain e=—0.4 in the quantum
well, the calculated discrete state spectrum in B=0 and 10 T
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FIG. 7. (Color online) Numerically calculated HH densities of
states in the elliptical quantum dot assuming no energy broadening
at B=(a) 0 and (b) 10 T. States originating in the minimum poten-
tial regions A and the higher-lying ringlike regions B are indicated
separately. (c) The same densities of states calculated with
I'=1.5 meV Gaussian energy broadening for B=0 and 10 T (lower
curves), as well as the B=10 T density of states with a larger
I'=2.5 meV energy broadening (top curve). The energy scale is
converted to applied bias at the top of (c) to facilitate direct com-
parison with the experimental 1(V) data of Fig. 5(a).

with no broadening is shown in Figs. 7(a) and 7(b) (here
again, the reference zero of energy is the Fermi Level Ef in
the emitter, consistent with Fig. 4). However, the scattering-
limited lifetime imposes an energy broadening (there is also
thermal broadening, which can be neglected at 7=1.7 K).
The lower two curves in Fig. 7(c) show the calculated den-
sities of states for B=0 and 10 T with Gaussian broadening
I'=#A/7=1.5 meV, corresponding to a mobility u=e7/m"
~3000 cm?/V s. This value is reasonable, given measured
2D hole gas mobilities in strained Si,Ge;_, channels at low T’
in the 10°—~10* cm?/V s range,?>?% as well as recent calcula-
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tions of hole mobility in strained Si,Ge,_, channels with low
carrier densities at low temperatures.”’” We find that as long
as the broadening is unchanged by B, the number of peaks in
the density of states is unchanged for our parameters, but
some of the peaks are weakened and shifted toward each
other in energy. However, if the energy broadening increases
with B, consistent with the increased broadening of Landau
levels in 2D carrier gases, the structure in the density of
states can be partially quenched. Typically, the Gaussian
broadening of Landau levels in 2D is predicted to increase as
B'2:T ~ (27lg*)2=(eB/2wh)'> 2> Thus, the top curve
in Fig. 7(c) shows the density of states in the dot at B
=10 T, assuming increased broadening I'=2.5 meV. The
number of peaks in the density of states and hence the num-
ber of fine structure peaks in the I(V,B) is quenched, in
qualitative agreement with the experimental data of Fig. 5(a).
Clearly, the large number of simplifying assumptions em-
ployed in converting the inhomogeneous strain to an effec-
tive lateral potential, analysis in terms of analytically trac-
table parabolic potentials, as well as our use of a constant
in-plane effective mass m" at an averaged strain to estimate
energy levels, precludes a quantitative comparison between
the calculated density of states with experimental fine struc-
ture on the I(V,B) characteristics.
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VI. CONCLUSIONS

In summary, we use magnetotunneling spectroscopy to
probe the hole states of the potential profile induced by the
lateral inhomogeneous strain relaxation in a sub-100-nm el-
liptical quantum dot etched from a p-Si/Si ;5Geg »5 double-
barrier RT heterostructure. The resonant current peaks corre-
sponding to tunneling into the heavy-hole and light-hole
subbands in large devices develop quasiperiodic fine struc-
ture in our sub-100-nm elliptical quantum dot. The fine
structure is partially quenched by high magnetic field B par-
allel to the current direction. We attribute the fine structure to
the confined states in the quantum dot in the presence of both
inhomogeneous strain and the magnetic field. Our experi-
mental observations are consistent with our finite-element
simulation of the potential induced by the strain relaxation
and numerical calculations of density of states with and with-
out magnetic field.
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