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ABSTRACT
Power consumption requirements drive CMOS scaling to
ever lower supply voltages, reducing the stability margin
with respect to thermal noise and raising the probability for
thermally-induced soft errors. Given the long time scale of
noise-induced soft errors, conventional Monte Carlo simula-
tions cannot be used to predict error rates and alternative
approaches are needed. In this paper, the analysis of ther-
mal fluctuations in a CMOS flip-flop is performed using a
2D queue that maps the available configurations for the flip-
flop in terms of electron populations on the two inverters,
with the two stable logic states at the opposite corners of
the 2D matrix. Trial simulations for model systems show
that the thermally-induced logic transitions involve only a
limited number of states immediately above and below the
main diagonal of the full 2D queue. We present a numerical
solution based on variable precision arithmetic for a trun-
cated 2D queue consisting of a variable number of near-
diagonal states. It is shown that increasing the width of
the near-diagonal queue, an accurate solution for the error
rate is asymptotically obtained without the need to con-
sider the full 2D queue. Our approach is used to calculate
the mean time to failure of flip-flops built in a 45-nm fully-
depleted silicon-on-insulator (FD-SOI) technology modeled
in the subthreshold regime, including parasitics. As a pre-
dictive tool, the framework can be used to investigate the
thermal stability of devices built in future technologies and
as a measure of device reliability in VLSI design.

Categories and Subject Descriptors
B.3 [Memory Structures]: General; B.3.4 [Reliability,
Testing, Fault Tolerance]: Diagnostics; B.6 [Logic De-
sign]: General
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1. INTRODUCTION
Noise margins represent a reliability concern for digital

circuits and the nature of the noise has been traditionally
dominated by factors such as supply voltage fluctuations and
capacitive cross-coupling. However, with the miniaturiza-
tion process, CMOS devices continue to scale down in both
physical dimension and operating voltage Vdd, giving rise
to other noise sources, such as thermal noise, electromag-
netic coupling, and hot-electron effects [1][2]. The relatively
wider process-related spread of gate threshold voltages will
also further reduce the operational noise margins.

In advanced CMOS transistors, noise measurements are
widely used to characterize processing quality at the device
level, but have had little impact to date on higher-level cir-
cuit design because, at the current stage of semiconductor
technology, the number of electrons flowing across the chan-
nel of a MOS transistor is sufficiently large to render the
current fluctuations negligible. However, as operating volt-
ages and transistor gate lengths are scaled down, current
fluctuations due to a few electrons will become more signif-
icant, thereby increasing the likelihood of soft errors.

Interest in ultra-low-voltage digital circuits has been grow-
ing in the past years, prompted by the need to reduce the
overall energy consumption[3][4]. If power reduction require-
ment is particularly stringent in some specific application,
such as biomedical implants, environmental monitoring de-
vices or space systems, the option of further reducing Vdd

into the subthreshold regime could prove useful [5][6]. This
reduction in the operating voltage raises the need for prob-
abilistic frameworks capable of analyzing the effect of noise
sources on low Vdd devices. The error rate estimates arising
from such models can serve as a guideline for the design of
logic circuits operated at ultra-low or subthreshold voltages.

In previous work [7], a theoretical framework was intro-
duced for calculating the soft-error rates due to thermal
noise in a flip-flop operated at subthreshold voltages. Rep-
resenting the flip-flop as a 2D queue, simulations on small
scale models indicated that the error-inducing thermal fluc-
tuations are dominated by the transitions along the diagonal
of the queue. A symbolic solution was derived for 1D diag-
onal approximation of the full queue which allowed for the
estimation of error rates in real devices. While the sym-
bolic solution has the advantage that it evaluates directly
the terms that are present in the transition time expression,
it is difficult to extend the symbolic solution to larger near-
diagonal 2D queues. In this paper, a numerical solution
for truncated 2D queue approximations of the full queue,
consisting of a variable number of near-diagonal states is
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Figure 1: The modeled flip-flop circuit. Capacitors
C1 and C2 represent the node capacitances associ-
ated with each inverter. For each transistor, the
charging and discharging rates λ and µ determine
the electron populations on the node capacitances.

presented. It is shown that increasing the width of the near-
diagonal queue, an accurate solution for the error rate is
asymptotically obtained without the need to consider the
full 2D queue.

2. THE 2D QUEUE REPRESENTATION
As described in [7], the possible configurations for the flip-

flop, Fig. 1, in terms of the electron populations k1, k2 on the
two load capacitors C1, C2 can be represented as a square 2D
queue, as shown in Fig. 2. A given state from the 2D queue
can be denoted as (k1, k2) and is surrounded by four states
denoted by (k1± 1, k2± 1). Each state is fully characterized
by the electron populations and the transition rates to each
of the neighboring states can be computed from the pub-
lished or theoretically predicted device characteristics [8].

If at time t = 0 the system is known to be in state labeled
i, the probability that it is still in state i some time later is
e−(Σri)t, where Σri is sum of the outward rates from state
i in four directions (or less if state i is an edge or a corner
state). The probability density for transitions out of this
state to any neighboring state is:

pi(t) = (Σri)e
−(Σri)t (1)

The residence time for state i is given by the first moment
of the transition probability density:

τi =

∫ ∞
0

t · pi(t)dt = (Σri)
−1 (2)

Denoting the rates connecting two states labeled i and q by
riq, the probability density for transitions out of state i to
a neighboring state q is given by riqpi(t)/Σri. The factor
riq/Σri is the probability that when the system leaves state
i, it goes to state q.

The moments of the probability density function in the
context of queuing theory [9][10] can be calculated using the
Laplace transform. The probability density for the time of

1

2

Figure 2: Two dimensional queue of available states
for CMOS flip-flop with k1 and k2 representing the
electron populations on the two inverters. The solu-
tion for the 1D diagonal approximation, represented
here with filled square, was derived in [7]. In this pa-
per the analysis extended to a truncated 2D queue
that is solved numerically using a variable number
of near-diagonal states. The variable parameter in
successive approximations is W , the width of the
band of near-diagonal states considered in the sim-
ulations.

reaching state q via state k if staring in state i is given by:

pi→k→q(t) =
ri,k
Σri

∫ t

0

pi(tk)pk,q(t− tk)dtk (3)

The Laplace transform of such a convolution is a simple
product:

L(pi→k→q(t)) =
ri,k
Σri

L(pi(t))L(pk,q(t)) (4)

Considering the expression for pi(t), Eq. (1) yields

L(pi(t)) =

∫ ∞
0

pi(t)e
−stdt =

Σri
s+ Σri

(5)

From an initial state i, the system may have to move through
a number of intermediate states to reach state q. Therefore
the probability density to reach q must be the sum of all
possible densities through the different intermediate neigh-
boring states k:

L(pi,q(t)) =
∑
k 6=q

ri,k
s+ Σri

L(pk,q(t))). (6)

If state q is the sink for which all the outward rates are zero,
then Eq. (6) modifies to

L(pi,q(t)) =
∑
k 6=q

ri,k
s+ Σri

L(pk,q(t))) +
ri,q

s+ Σri
(7)

The probability density function pi,f (t) requires solving for
the Laplace transform associated with the transition be-
tween the initial and final states. The Laplace transform
is used to calculate the moments of the probability density
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Figure 3: MC simulations run at room tempera-
ture for a model flip-flop with fixed capacitance de-
scribed in [9] and driven at an artificially low volt-
age Vdd = 0.075V , show that the thermally-induced
logic transitions involve only a limited number of
states immediately above and below the main diag-
onal of the full 2D queue. The gray scale is expo-
nential, illustrating the high occupation probability
for the states within the 2D queue that are associ-
ated with the stable logic states, limited occupation
for the near-diagonal states that participate in the
transition and negligible presence in the off-diagonal
states.

function. The nth order moment is given by:

Mn = (−1)n lim
s→0

dn

dsn
Li,f (s) (8)

As described in [7], a symbolic solution was found for 1D
diagonal approximation to the full 2D queue as illustrated
in Fig. 2 with filled squares. The solution for the 1D diag-
onal approximation made it possible to estimate the error
rates for flip-flops built in a 45-nm FD-SOI technology [11]
as well as for devices built in a future technology described
in the ITRS [1]. Comparison with Monte Carlo simulations
for model flip-flops with a reduced number of electrons, con-
firmed that the 1D diagonal gives the order of magnitude of
the mean time to a thermally-induced logic error.

The symbolic pattern for the simplest near-diagonal ap-
proximation, consisting of the main diagonal and the states
immediately below it, increases exponentially in complexity
with respect to the simple 1D diagonal path. The higher-
order moments needed to fully describe the statistics of error
rates present an even higher degree of pattern complexity,
making the symbolic solution impractical.

Moving beyond the symbolic approach, the guideline for
extending the analysis arises from Monte Carlo simulations
of modeled flip-flops operated at artificially low voltages
(Vdd = 0.075V ), see Fig. 3. These simulations show that
the thermal broadening of the occupied logic states occurs
predominantly along the diagonal with a spread influenced
by the ratio of the thermal and driving energy kBT/qVdd.
It can be seen that the states within the 2D queue that are
involved in transition are only the ones that lie near the

main diagonal, while off-diagonal states are not relevant for
the thermal transition process. Therefore, considering ever
larger near-diagonal approximation with increasing W , Fig.
2, is expected to lead asymptotically to an accurate solution
for the error rates, without the need to solve the complete
2D queue.

3. NUMERICAL APPROACH FOR SOLVING
THE TRUNCATED 2D MARKOV CHAIN

3.1 Forming a system of equations for calcu-
lating the probability moments

The Laplace system of equations described in Eq. (6) can
be written in matrix form

A(s)x(s) = b(s) (9)

where A(s) is a matrix of coefficients, x(s) is a vector of
Laplace transforms of the time-dependent failure PDFs for
the states and b(s) is the right hand side vector correspond-
ing to the last term in Eq. (7).

According to Eq.(8), the different probability moments
of the PDFs are equal in amplitude to the corresponding
derivatives of the Laplace transforms, x(s), evaluated at s =
0. For example, to obtain the mean time to failure, one needs
to evaluate −x′(s) |s=0 . A systematic approach to solve for
the first four moments will be presented in this section:

One may start by differentiating Eq. (9) with respect to
s, four times to get

A′x + Ax′ = b′ (10)

A′′x + 2A′x′ + Ax′′ = b′′ (11)

A(3)x + 3A′′x′ + 3A′x′′ + Ax(3) = b(3) (12)

A(4)x + 4A(3)x′ + 6A′′x′′ + 4A′x(3) + Ax(4) = b(4) (13)

in which the s dependence is omitted for brevity. Solving
for x′, x′′, x(3) and x(4) from Eqs. (10)-(13) yields

x′ = A−1 (b′ −A′x
)

(14)

x′′ = A−1 (b′′ −A′′x− 2A′x′
)

(15)

x(3) = A−1
(
b(3) −A(3)x− 3A′′x′ − 3A′x′′

)
(16)

x(4) = A−1
(
b(4) −A(4)x− 4A(3)x′ − 6A′′x′′ − 4A′x(3)

)
(17)

all evaluated at s = 0. The values for x and its derivatives at
zero can be obtained by forward substitution in Eqs. (14)-
(17). It should be noted that x(0) = 1 by the definition of
Laplace transform and that all PDFs are positive definite
and normalized to unity.

From Eq. (6), all the elements of the matrix A(s) as well
as those of the vector b(s) have the form

Aij(s) =
rij

s+ cij
(18)

in which rij is the rate of flow from the state (i, j) to a
specific neighboring state and cij is the sum of all rates ex-
iting the state (i, j). The derivatives of (18) can be easily
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Figure 4: The first three moments of the probabil-
ity density function give the mean time to failure
(seconds), variance and skewness of the probability
curve. The x and y axes map the 2D queue, while
the z axis presents the numerical results for time
to failure in a FD-SOI CMOS flip-flop operated at
Vdd = 0.2V .

evaluated to any order at s = 0:

dnAij(s)

dsn

∣∣∣∣
s=0

=
dn

dsn

(
rij

s+ cij

)∣∣∣∣
s=0

=
(−1)nn!rij

cn+1
ij

(19)

Using this equation, all the terms in Eqs. (14)-(17) can
be written solely in terms of the rates, independent of the
variable s and one can solve for x′ through x(4) by Gaussian
elimination.

3.2 Near-diagonal approximation and multi-
ple precision arithmetic

The 2D Markov queue for a flip-flop with maximum num-
ber of N electrons has N2 possible states, therefore the ma-
trix A will have N4 elements. Taking a realistic device op-
erated at the subthreshold voltage of Vdd = 0.2V , results
in N ≈ 200. The required memory for containing the non-
sparse matrix A during the Gaussian elimination will be
about 12GB, assuming 8-byte double-precision format for
each element. The other computational burden is that for
N ≥ 40, the system shows signs of ill-conditioning to the
point that at about N ≥ 50 the final results are not valid.

The ill-conditioning problem can be addressed by using ar-
bitrary/multiple precision arithmetic (MPA) 1 where more
bits are allocated for storing each element than in conven-
tional double-precision format. No matter how badly the
system is ill-conditioned, it is only relative to the degree of
precision used and one may always increase the precision
to compensate for the numerical errors caused by high de-
grees of system sensitivity. However the use of MPA leads to
even larger memory requirements and much lower processing
speeds.

These constraints may be enormously relaxed by only con-
sidering the states on or near the diagonal connecting the

1The GMP free library was used for the simulations in this
project
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Figure 5: Normalized Probability Density Function
and Cumulative Distribution Function for a flip-flop
operated at Vdd = 0.2V with N ≈ 200

two stable states of the flip-flop. The memory required for
the N = 300 system mentioned above drops down to 1.2GB
when only taking into account the states within a W = 20
band around the diagonal. The processing time also reduces
to an hour, on a 16 core workstation. 2
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Figure 6: Increasing the width, W , of successive
band diagonal queues results in an asymptotic re-
fining of the accuracy in predicting the error rates.
This confirms that only a limited number of states
immediately above and below the main diagonal are
relevant in the analysis of thermally-induced errors.
Therefore to estimate the soft-error rates it is not
necessary to solve the full 2D-queue, which reduces
the computational complexity from N2 to WN . This
result is of particular relevance for a future analysis
that will address logic devices operated at voltages
above threshold where the number, N , of electrons
is much larger.

The mean time to failure, variance and skewness for FD-
SOI CMOS flip-flop are shown in Fig. 4. The device was bi-
ased at Vdd = 0.2V considering a worst case scenario of 15%

2Four Quad-Core 2.3GHz AMD Optron 8356, 64GB physi-
cal memory
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threshold variation among the p and n transistors and oper-
ated at room temperature. The mean time to failure for this
single device is ∼ 109 seconds which is equivalent to 30 years.
This is a very high error rate on a practical basis: nowadays,
a modern processor has about 8MBs of built-in SRAM cache,
utilizing approximately on the order of 108 flip-flops running
concurrently. Assuming independent errors, the mean time
to failure drops down to about 30 seconds for such a system,
assuming no error correction. Clearly, operating the system
at higher voltages improves the stability exponentially. On
the other hand, higher temperature, expected in future cir-
cuits will also reduce the noise margins. Our approach is
capable of accounting for the variation in these technologi-
cal and operational factors, to produce an estimate of error
rates for subthreshold flip-flops.

As the Fig. 4 suggests, the variance is typically twice as
large in orders of magnitude as the mean, therefore the stan-
dard deviation is the same order of magnitude as the mean,
suggesting a very wide probability distribution [12]. The
probability density function (PDF) and cumulative distri-
bution function (CDF) for this system are calculated using
the first three moments and shown in Fig. 5. From the
shape of the probability distributions, it can be seen that
the time scale in which the CDF reaches a value of 1% is
two orders of magnitude less than the mean time to error.

The effect of different band widths, W , in calculating the
mean time is shown in Fig. 6. Increasing the width, W
of successive band diagonal queues results in an asymptotic
refining of the accuracy in predicting the error rates. This
confirms that only a limited number of states immediately
above and below the main diagonal is relevant in the analysis
of thermally-induced errors. The same asymptotic trend is
observed in the calculations for the higher moments. There-
fore, to obtain the statistics of the soft-error rates it is not
necessary to solve the full 2D-queue, which reduces the com-
putational complexity from N2 to WN . This result is of par-
ticular relevance for devices operated at higher Vdd, where
N is much larger.

3.3 Formulation of the steady-state thermal dis-
tribution

Interestingly, our numerical approach can also be used to
derive the steady-state statistics of the thermally-induced
logic transitions. Given an initial probability distribution
for the states of the system, the continuity equation governs
the dynamics of probability flow between the states:

−α∂Pi,j(t)

∂t
=
(
∇ · rP (t)

)∣∣
i,j

(20)

in which α is a constant of proportionality and rP (t) in-
dicates the net probability flow out of the state (i, j). As
t → ∞ the system acquires a global steady state and the
probabilities lose their time dependence, making the left
hand side of Eq. (20) zero. In this condition, expanding
the discrete divergence in the right hand side of the same
equation reads

(ui,j + di,j + ri,j + li,j)Pi,j = di+1,jPi+1,j+
ui−1,jPi−1,j + li,j+1Pi,j+1 + ri,j−1Pi,j−1

(21)

Eq. (21) applied to all the states within a band around the
diagonal produces a system of equations that can be solved
using the same techniques described above. The thermal dis-
tribution for an FD-SOI CMOS flip-flop with 15% threshold
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Figure 7: The process-induced threshold variations
in the transistors that make up the flip-flop ren-
der a given logic state to be more stable than the
other. Steady-state thermal broadening for an FD-
SOI CMOS flip-flop operated at Vdd = 0.2V illus-
trates the confining of the system within the well
defined logic states and exponentially rare transi-
tions. The x and y axes map the 2D queue, while the
z axis presents the numerical results for the occupa-
tion probability of states in a near-diagonal queue.

variation is shown in Fig. 7. Because of the asymmetry in
the device resulting from the threshold variation, it is ∼ 1037

times more likely to find the device in the stronger stable
state than in the weaker stable state, if let the device run
indefinitely without applying an input. More importantly,
Fig. 7 shows the steady-state thermal broadening of both
logic states similar to Fig. 3 but without recourse to Monte
Carlo simulations.

4. IMPLICATIONS FOR VLSI DESIGN
The classical approach to noise analysis is based on com-

puting the independent mean square current or voltage fluc-
tuation in each device within the bandwidth of the circuit
[13]. The underlying assumptions are that the noise statis-
tics are stationary and the noise amplitude is sufficiently
low so that the circuit behaves linearly. Under those as-
sumptions, the noise energies are added at the output of the
circuit to find a total mean square noise voltage. That lim-
ited information does not predict the time it would take to
disturb the state of a flip-flop. Moreover, a flip-flop that has
sufficient noise fluctuation to change state does not satisfy
either classical assumption, because the noise current distri-
butions change with the storage node potentials, as do the
noise gains.

Given these limitations, it is impossible to compute these
error rates using conventional electronic circuit simulators
such as SPICE [14], engendering the need for probabilis-
tic frameworks capable of analyzing the effect of thermal
noise on low-power devices. Our approach provides such a
technique and takes into account parameters such as supply
voltage, temperature, physical dimensions of the logic device
and process-related spread of threshold voltages.
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5. CONCLUSIONS AND FUTURE WORK
This paper extends the analysis of the effect of thermal

noise fluctuations on the logic stability of CMOS flip-flops
within the 2D queue representation that was introduced in
[7]. While MC simulations for systems of real interest fail
to describe the transition process resulting in a logic error
due to the long time scales involved, for model systems run
at artificially low Vdd, such simulations offer valuable insight
in the statistics of the process. It was shown that the logic
transitions involve only a limited number of states imme-
diately above and below the main diagonal of the full 2D
queue.

A numerical solution based on variable precision arith-
metic for a truncated 2D queue consisting of a variable num-
ber of near-diagonal states is presented in this paper. It is
shown that increasing the width W of the band diagonal,
an accurate solution for the error rate is asymptotically ob-
tained without the need to consider the full 2D queue. The
same asymptotic trend is observed in the calculations for
the higher moments. Therefore, to obtain the statistics of
the soft-error rates it is not necessary to solve the full 2D-
queue which reduces the computational complexity from N2

to WN . This result is of particular relevance for a future
analysis that includes logic devices operated at higher volt-
age and into the above threshold region where the number
of electrons N is much larger.

The numerical solution is used to calculate the mean time
to failure of flip-flops built in a 45-nm FD-SOI technology
modeled in the subthreshold regime. The error rates for
individual devices built in this technology show that consid-
ering the very large number of devices in modern integrated
circuits, thermal errors are a serious issue for the worst-
case scenario of up to 15% threshold shifts of opposite sign
in the two inverters operated at subthreshold Vdd. These
results highlight the importance of the extended analytical
framework presented in this paper as a predictive tool to
investigate the reliability of a class of logic devices. In the
future, we plan to extend our analysis to SRAM cells op-
erated in subthreshold using current and ITRS predicted
ultimate CMOS transistors. This can be done by expand-
ing the queue to the higher dimensions to map the states
introduced by the two pass-gate transistors in the SRAM.
The same strategy can be applied to logic circuits of higher
complexity provided they are operated at subthreshold.
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