
A Noise-immune Sub-threshold Circuit Design
based on Selective Use of Schmitt-trigger Logic

Marco Donato
∗

School of Engineering
Brown University

Providence, RI 02912

Fabio Cremona
Sapienza University of Rome

00185, Italy

Warren Jin
School of Engineering

Brown University
Providence, RI 02912

R. Iris Bahar
School of Engineering

Brown University
Providence, RI 02912

William Patterson
School of Engineering

Brown University
Providence, RI 02912

Alexander Zaslavsky
School of Engineering

Brown University
Providence, RI 02912

Joseph Mundy
School of Engineering

Brown University
Providence, RI 02912

ABSTRACT
Nanoscale circuits operating at sub-threshold voltages are affected
by growing impact of random telegraph signal (RTS) and thermal
noise. Given the low operational voltages and subsequently lower
noise margins, these noise phenomena are capable of changing the
value of some of the nodes in the circuit, compromising the re-
liability of the computation. We propose a method for improving
noise-tolerance by selectively applying feed-forward reinforcement
to circuits based on use of existing invariant relationships. As re-
inforcement mechanism, we used a modification of the standard
CMOS gates based on the Schmitt trigger circuit. SPICE simu-
lations show our solution offers better noise immunity than both
standard CMOS and fully reinforced circuits, with limited area and
power overhead.

Categories and Subject Descriptors
B.2.3 [Arithmetic and Logic Structures]: Reliability, Testing,
and Fault-Tolerance—Redundant design

General Terms
Design, Reliability

Keywords
Schmitt Trigger, Noise immunity, Subthreshold operation.

∗Should you need further information, please contact Marco Do-
nato (email: marco_donato@brown.edu).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05 ...$10.00.

1. INTRODUCTION
Modern CMOS integrated circuits have benefited from technol-

ogy scaling in the nanoscale regime, which has allowed for faster
circuits and increased levels of integration. However, miniaturiza-
tion has also brought many challenges. First, as node capacitances
shrink with smaller device dimensions, the RMS value of thermal
noise also rises. Moreover, having a lower number of electrons in
the channel amplifies the effect of fluctuations of the carriers due
to random telegraph signal (RTS) noise. While the effects of these
phenomena could be negligible for standard designs, they become
critical for ultra low-power applications (ULP). One of the most ap-
pealing approaches for ULP design is operating the circuits in the
sub-threshold regime. However, given the reduced noise margins
of transistors operated in the sub-threshold regime, the magnitude
and the frequency of soft errors could drastically reduce the relia-
bility of the system. Therefore, it is critical to find viable solutions
to improve the noise robustness of nanoscale sub-threshold circuits.

A number of techniques to improve noise-immunity of nanoscale
circuits have been proposed, many of them based on adding redun-
dant logic to the circuit (e.g., [17], [12], [6]). However, one of the
main drawbacks of these solutions is the relatively high transistor
count overhead required to achieve reasonable levels of noise im-
munity. Increasing the number of transistors leads to higher power
dissipation and virtually eliminates any benefit obtained by oper-
ating the circuit in the sub-threshold regime. Therefore, new ap-
proaches to improve noise-immunity of nanoscale circuits are re-
quired to make sub-threshold operation worthwhile.

In this paper, we propose to selectively introduce redundant logic
to the circuit, based on the use of existing invariant relationships
(or logic implications) within the circuit itself. These invariant re-
lationships represent expected logical behavior of the circuit and
must be satisfied for the circuit to be operating correctly. For in-
stance, the invariant relationship a = 1 ⇒ b = 1 implies that b
(the implicand) must have a logic value of 1 whenever a (the impli-
cant) has a logic value of 1.

Invariant relationships may be expressed through feed-forward
reinforcements in the circuit. The basic idea of using implications
to reinforce correct logical behavior is itself rather general, and
therefore could be implemented at the circuit level in a number of

39

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2206781.2206792&domain=pdf&date_stamp=2012-05-03

ways. One possible approach is to prevent the gate that produces
the implicand from chenging its output value if this contradicts the
invariant relationship. One way to accomplish this is to control the
switching threshold of the gate using the gate that produces the im-
plicant. A well known circuit that shows a similar behavior is the
Schmitt trigger circuit [15].

A major advantage of using the Schmitt trigger circuits is their
relatively low transistor count overhead. Nevertheless, replacing
every gate in the circuit with a Schmitt trigger implementation would
still lead to an unacceptable transistor count. Instead, we propose
selectively adding Schmitt gates to reinforce signals that are most
likely to produce bit flips at primary outputs. Our SPICE simula-
tions show that our approach has the lowest failure rate for min-
imum power and area overhead, proving that it is a viable solu-
tion for designing noise-immune circuits when rigid power and area
constraints exist.

The rest of this paper is organized as follows. In Section 2 we
will describe the motivation for our work and give some back-
ground on the building blocks of our approach. In Section 3 we
first give an example explaining the importance of taking into ac-
count the effect of different noise sources in nanoscale circuits. We
then present an approach for implementing the reinforcement using
Schmitt-trigger based gates. In Section 4 we will describe in detail
our time-domain noise simulations and give a quantitative analysis
of the noise immunity of the various solutions, as well as an esti-
mate of the introduced power and area overhead. In Section 5 we
will introduce a design flow that will allow to automatically find
implication paths that can be used to feed-forward reinforcement.
Finally, we present conclusions and future work in Section 6.

Figure 1: Example circuit with implications, taken from [1].

2. BACKGROUND

2.1 Noise-Immune Circuit Design
The basic concept of error-immune design is far from new. One

of the earliest examples is the Modular Redundancy approach in-
troduced by Von Neumann in [17] where the logic is replicated a
certain number of times (e.g., three times in the case of Triple Mod-
ular Redundancy (TMR)) and all the outputs are then sent to a ma-
jority gate in order to get the final output. This technique introduces
two main problems: first, the area overhead is always greater than
200% depending on how many times the main logic is replicated
and the size of the majority gate; in addition, the error immunity is
still determined by the majority gate that could be still affected by
errors.

Other techniques use gate resizing for improving the immunity
of selected gates to single event upsets (SEU) (see, for example [13]).
These techniques could still be insufficient if the noise in the stages
preceding the resized gate is strong enough to generate a signal flip,
since the voltage at the input node of the resized gate would be al-
ready different from the correct value and there would be no means

for correcting the signal. Therefore, there is a need for reinforcing
techniques that can be effective across multiple gates.

A different approach has been considered in [12], where a proba-
bilistic framework based on Markov Random Fields (MRF) is pro-
posed for designing noise-immune circuits. In particular, the MRF
framework used feedback of the satisfiability constraints of a gate’s
function to reinforce correct behavior. More recently, Turtle Logic
(TL) has been proposed to achieve noise immunity by exploiting
port redundancy and coherence analysis of the redundant data [6].
Both these approaches show a greatly improved immunity to noise
compared to standard implementations; however, they carry signif-
icant area overhead which can have a substantial negative impact
on power dissipation and delay. These factors may significantly
limit their suitability for sub-threshold circuit design, where per-
formance is already traded off for reduced power dissipation.

2.2 Implications
Exploiting knowledge of invariant relationships (or implications)

is a simple yet useful concept that has already found application in
error detection and logic testing methodologies [1] [2] [11]. Im-
plications are logic relationships between nodes in the circuit that
hold for any input vector. An example is illustrated in Figure 1,
where six different implications are enumerated.

In

X

Figure 2: Schmitt trigger circuit implementing an inverter
function.

If we consider for instance the first line in the implications list,
it states that for any input vector for which N3 (the implicant) is
equal to 0, the output N24 (the implicand) will have to be at 0 as
well. The same reasoning applies to all the other implication re-
lationships shown in Figure 1. In the works of [1] [2] [11], the
authors used implications for online error detection by adding re-
dundant circuitry (i.e., checker logic) to verify if selected implica-
tion relationships were valid. If there were an inconsistency in the
checker logic, an error would be flagged.

Taking the ideas from [1], we could imagine using implication
logic not just to detect errors but also to reinforce correct logic be-
havior. As a simple application of these implications, we could
imagine using them to monitor the errors on certain paths to the
primary output and, if an error is detected, flip the output signal.
However, this solution would require adding not only the logic for
checking the implications but also a multiplexer for selecting be-
tween the direct or inverted output. Also, the main problem would
be that the multiplexing operation at the last stage would have the
same issues as the voting system for the modular redundancy de-
sign. As we will show shortly, we can obtain solutions with less
overhead and better noise immunity than this simple approach.

In this paper, we propose to use implicants as control signals for

40

the gates that produce the implicands. If we consider again the cir-
cuit in Figure 1 with its implication N3 = 0 ⇒ N24 = 0, we can
use the value at node N3 to force the value at node N24 through
a feed-forward mechanism. Results from [1] show that thousands
of these relationships exist in standard benchmark logic circuits.
Therefore, we can choose a subset of these implications and use
them to selectively reinforce the circuit. Depending on the archi-
tecture that is used for implementing the feed-forward system, this
approach can lead to notable error-rate reduction with very modest
area, delay and power overhead.

Figure 3: Schmitt trigger based NAND gate.

2.3 Schmitt Trigger Circuits
We introduced the use of implications for increasing the reliabil-

ity of a circuit as a general approach. However, we need to find an
architecture for implementing the feed-forwarding reinforcement.
The Schmitt trigger circuit [15] is generally used to extract signals
from noisy environments and can serve our purpose. In particular,
we refer to the implementation shown in Figure 2. We can describe
its operation as follows: let us consider the case in which the input
of the trigger is at logic value 0 and the output is at 1. The NMOS
pass transistor M5 is on, increasing the potential at node x; if the
gate voltage moves from its initial value, it will have to overcome
the regular switching threshold voltage of the NMOS transistors in
the pull-down network (PDN) by the value at x. The same behavior
can be seen for the pull-up network (PUN) and the two structures
combined produce the well known hysteresis characteristic of the
Schmitt trigger. This circuit has been demonstrated to be effective
also in subthreshold design [9]. Moreover, Dokic has shown in [5]
the possibility of extending the same design structure of the Schmitt
trigger to more general logic gates such as NAND and NOR. The
Schmitt implementation of a NAND function is shown in Figure 3.
In all these cases the reinforcement is introduced using a feed-back
mechanism. Our first modification to the circuit consists in con-
necting the gates of the pass transistors to a node different from the
gate’s output. This modification provides the means for implement-
ing the implication reinforcement. Let us consider the example in
which the implication relationship is Ctrl = 0 ⇒ Out = 1,
where Ctrl could be any node in the circuit and Out is the output
of a NAND and an implicand related to the implicant Ctrl. Note
that this kind of implication is unidirectional and valid only for one
of the two logic levels. This requires a further modification of the

Schmitt gate structure; in this particular case we will connect the
gate of the pass-transistor (PMOS) to the node Ctrl, and the drain
of the pass-transistor will be connected to the middle node of the
PDN. In this way, whenever the signal Ctrl is 0, the gate will be
prevented from performing the transition 1 to 0. The resulting cir-
cuit is shown in Figure 4. In the general case, the implicant will
determine the type of pass-transistor (NMOS if the implicant is 1
and PMOS otherwise) while the implicand will determine to which
network (pull-up or pull-down) the reinforcement will be applied,
leading to four possible Schmitt gates in total.

Ctrl

Implication:

Ctrl = 0 Out = 1

Figure 4: A modified Schmitt NAND for implication reinforce-
ment.

3. METHODOLOGY
In this section we will show an example of how the performance

of a circuit operating at sub-threshold supply voltage can be dra-
matically affected by noise. We choose to simulate our circuit us-
ing a 22nm FDSOI model card [3]. The importance of both ther-
mal noise and random telegraph signal (RTS) noise for nanoscale
circuits has been widely discussed [14] [8] [4] [16]. We therefore
consider both sources of noise in our simulations to evaluation sig-
nal integrity.

N9

N12

N11

N10

N16'

N24N1

N2

N3

N4

N7

N5

N8

Figure 5: Implemented version of the example circuit shown in
Figure 1.

3.1 Motivational Example
Let us consider again the circuit in Figure 1. The slightly modi-

fied version used for our SPICE simulations is shown in Figure 5.
In order to add noise to our simulations we considered the meth-
ods described in [10] and [19]. In particular, we generated additive
white Gaussian noise (AWGN) with 0 mean and 10mV standard
deviation (a reasonable value for a 22nm technology node), RTS

41

Figure 6: Example circuit’s output and input to the last stage for standard CMOS implementation

noise with values of the amplitude equal to 50mV , and we con-
sidered the Fast Slow corner library that represents the worst-case
scenario. For nanoscale technologies it is very hard to control the
process variations and produce a circuit following the nominal be-
havior, therefore we think that considering the corner libraries is the
most realistic condition. The circuit was simulated using a supply
voltage of VDD = 170mV , i.e., below the threshold voltage of the
devices. The signal traces from the SPICE simulations are shown
in Figure 6. It is clear from this figure that the circuit is unable to
perform a correct computation under the imposed noisy conditions.

In order to explain how our solution works we will empirically
describe the approach. We will use the implication set listed in Fig-
ure 1 for this purpose. Since we are interested in producing the cor-
rect signal at the output, we will first consider all the implications
to the output node N24 and then try to build a path of implications
through the entire circuit. Therefore, we have the following set of
implications to start with: N3 = 0 ⇒ N24 = 0, N4 = 1 ⇒
N24 = 0, N10 = 0 ⇒ N24 = 0, N1 = 0 ⇒ N24 = 0. We can
immediately discard the implication with N1 since it is a primary
input and therefore it does not provide any means for reinforcing
internal nodes. The same reasoning applies to N3 and N4, there-
fore our choice is the implication N10 = 0 ⇒ N24 = 0. At this
point we need to find an implication that has N10 as its implicand
and a node closer to the primary inputs as implicant. In our exam-
ple we will pick N4 = 1 ⇒ N10 = 0. In this way we have created
a reinforcement path to the primary output where all the nodes in-
volved in the process are reinforced along the way. The next step
is modifying the circuit according to the chosen implications. The
gate that produces N24 will have a reinforced PUN controlled by
a PMOS (since the implicant is 0), while the gate that produces
N10 will have a reinforced PUN controlled this time by an NMOS
(implicant 1). The total overhead required by this solution is 6 ad-
ditional transistors.

As mentioned earlier, we built a library based on a 22nm FDSOI
model of standard CMOS gates and modified Schmitt gates. Con-
sidering that all devices are operating in the subthreshold regime
and that the Schmitt design requires doubling the number of tran-
sistors in a stack, we decided to limit our library to only two-input
gates. With regard to the implementation of a 2-input XOR gate,
the authors of [18] have shown that degradation of the output sig-
nal can arise in a transmission-gate based XOR circuit due to the
imbalance between the on current and the leakage current. For this
reason, we decided to use the solution proposed in [7] which does
not require additional inverters for generating complementary in-
puts and has also shown a better noise immunity when compared
to other design solutions. Note however, that nothing prevents from

Figure 7: XOR gate adopted for the library

using any other XOR design with our approach. The adopted XOR
circuit is shown in Figure 7.

4. SIMULATIONS
In this section we show the results and describe the details of

the SPICE noise simulations. Let us compare the simulations for
the example circuit of Figure 5 implemented in standard CMOS as
well as with the implication reinforcement discussed in the previ-
ous section. The results are shown in Figure 8. The superimposed
black trace is the result for the noiseless simulation of the CMOS
circuit. Notice that, when simulated with additional noise, the stan-
dard CMOS implementation produces unacceptably noisy signals,
whereas our implication reinforced circuit reduces noise on the out-
put signal significantly. It is also worth noticing that in both cases
the noise at node N16′ is the same meaning that the Schmitt gate
is actually correcting the errors on the signal.

Next, we also need to compare against other reinforcement ap-
proaches. Several works on circuit reliability and noise immunity
have focused their attention on strengthening just the memory el-
ements in the circuit. One way to investigate how this approach
would work would be to reinforce just the final stage of the circuit
(i.e., the stage feeding directly into the memory element) with a
standard Schmitt gate (i.e., the one shown in Figure 2). Another
approach would be to fully reinforce the circuit by substituting ev-
ery CMOS gate with an equivalent Schmitt gate. The results for
these two solutions are shown in Figure 9. As seen from the wave-
forms in Figure 9, the first approach of reinforcing only the final
output is not robust enough. While the second approach of fully re-

42

CMOS Node N16'

CMOS Node N24

IMPLICATION Node N16'

IMPLICATION Node N24

Figure 8: Comparison between standard CMOS implementa-
tion and implication/reinforced implementation.

OUT SCHMITT node N24

FULL SCHMITT node N24

Figure 9: Example circuit’s output for full Schmitt and stan-
dard CMOS with Schmitt gate on the last stage

inforcing every gate in the circuit produces a clean output, its cost
in terms of transistor count is more than twice that of the initial
CMOS design. Hence, while our implication approach still leaves
some noise on the output, it provides a much better tradeoff be-
tween noise immunity and area overhead.

The main challenge in carrying out time-domain noise simula-
tions is the computation time. Considering the slow variability of
RTS noise, with RTS glitches occuring on the ms time scale, direct
time domain simulation is prohibitively long. Therefore, to better
evaluate the performance of our solution, we decided to generate
several samples of the injected RTS noise and perform 100 distinct
simulations on a time of 100 µsec, thereby artificially increasing
the frequency of the RTS noise. On each of the 100 simulations we
made the inputs loop over a predefined test vector. We then con-
sidered each iteration of the loop as the time window for the error
rate: if the signal crosses the error threshold for more than 10% of
the time, we record an upset; this helps filtering out small glitches
and transitions.

For the tested circuit we used 2 implications, producing an over-
head of 18.75% in number of transistors and 24% in power con-
sumption. With this cost we were able to reduce the failure rate
from 6.5% to 0%. It is important to mention that in the case of
many upsets producing failure at the primary output we count just a
single error. Therefore, the failure rate does not represent the num-
ber of total errors registered in the simulations. While the CMOS
implementation shows an unacceptable failure rate, the implication

Figure 10: Detailed design flow chart

design offers a faultless output, with reasonable area and power
overhead compared to full logic replication.

5. DESIGN FLOW
Following the idea described in Section 3, we will now present

a potential work flow that can be used for automatically inserting
the implication reinforcement into a standard CMOS design. First,
we need a method for identifying the implications given a circuit
netlist. For this purpose we can partially re-use the flow shown
in [1]. It is important to clarify that at this stage we are interested
only in the implication discovery process, while the process of trim-
ming the list trying to get rid of weak implications might actually
hinder our purpose. In particular, the authors of [1] consider as
weak, those implications that can be included in other implications
and implications where the implicant and the implicand can be de-
rived from a common node; while these implications can be dis-
carded for online error detection, they might be critical for finding
a path between the primary outputs and the primary inputs. There-
fore, the design flow we envision is illustrated in Figure 10 and can
be described as follows:

• Implication discovery and verification: in this initial part,
a logic simulation of the circuit over a limited number of
input vectors is carried out. The logic values at each node in
the circuit are then used as input to a script that verifies the
presence of possible implications. While the previous step
produces a list of possible implications, these values have

43

been tested only on a limited number of vectors. Therefore,
we need to to check for the presence of input patterns that
would violate possible implications values. This can be done
implicitly using, for instance, a SAT solver.

• Implication sorting: once we have a verified list of implica-
tions we need to understand which implications will be more
suitable for reinforcement. The best implication for our pur-
pose is the one that holds for most of the input patterns. Once
again, a logic simulation can be used for extrapolating the
implications’ frequency.

• Output-to-input path extraction: Once we have a score
assigned to any implication in the list we, can build our rein-
forcing paths starting from those implications that have pri-
mary outputs as implicands, and then move backwards to
the primary inputs considering the implications with higher
score first. In this step, a threshold for the chain length could
be used to set the maximum area overhead.

• SPICE netlist extraction and simulation: The final impli-
cation list is used in combination with the verilog netlist to
extract a SPICE netlist in which the Schmitt gates are auto-
matically inserted. This netlist is then used for circuit simu-
lations.

6. CONCLUSIONS
In this work we have shown a very cost-effective solution for

improving the reliability of sub-threshold nanoscale circuits. The
implication methodology represents a general framework for selec-
tive reinforcement. We decided to use Schmitt trigger based cir-
cuits for implementing the implication reinforcement, and we have
demonstrated that this solution offers good noise immunity with a
limited cost in terms of area and power overhead. Future work will
focus on implementing the design flow described in Section 5 for
automating the selection of implications and the insertion of the
reinforced gates. We will also expand the simulations to a wider
range of circuits as well as to other noise-immune design solutions.

7. ACKNOWLEDGMENTS
This work was supported in part by DTRA under Grant HDTRA

1-10-1-0013.

8. REFERENCES
[1] N. Alves, A. Buben, K. Nepal, J. Dworak, and R. I. Bahar. A

Cost Effective Approach for Online Error Detection Using
Invariant Relationships. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
29(5):788–801, May 2010.

[2] N. Alves, Y. Shi, J. Dworak, R. I. Bahar, and K. Nepal.
Enhancing online error detection through area-efficient
multi-site implications. In 29th VLSI Test Symposium, pages
241–246. IEEE, May 2011.

[3] D. Bol, S. Bernard, and D. Flandre. Pre-silicon 22/20 nm
compact MOSFET models for bulk vs. FD SOI low-power
circuit benchmarks. In IEEE 2011 International SOI
Conference, pages 1–2. IEEE, Oct. 2011.

[4] L. Brusamarello, G. I. Wirth, and R. da Silva. Statistical RTS
model for digital circuits. Microelectronics Reliability,
49(9-11):1064–1069, Sept. 2009.

[5] B. Dokic. CMOS NAND and NOR Schmitt circuits.
Microelectronics Journal, 27(8):757–765, Nov. 1996.

[6] L. García-Leyva, D. Andrade, S. Gómez, A. Calomarde,
F. Moll, and A. Rubio. New redundant logic design concept
for high noise and low voltage scenarios. Microelectronics
Journal, 42(12):1359–1369, Dec. 2011.

[7] W. Jyh-Ming, F. Sung-Chuan, and F. Wu-Shiung. New
efficient designs for XOR and XNOR functions on the
transistor level. IEEE Journal of Solid-State Circuits,
29(7):780–786, July 1994.

[8] L. B. Kish. End of Moore’s law: thermal (noise) death of
integration in micro and nano electronics. Physics Letters A,
305(3-4):144–149, Dec. 2002.

[9] J. P. Kulkarni, K. Kim, and K. Roy. A 160 mV, fully
differential, robust schmitt trigger based sub-threshold
SRAM. In Proceedings of the 2007 international symposium
on Low power electronics and design - ISLPED ’07, pages
171–176, New York, New York, USA, 2007. ACM Press.

[10] T. Lee and G. Cho. Monte Carlo based time-domain Hspice
noise simulation for CSA-CRRC circuit. Nuclear
Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated
Equipment, 505(1-2):328–333, June 2003.

[11] K. Nepal, N. Alves, J. Dworak, and R. Bahar. Using
Implications for Online Error Detection. In 2008 IEEE
International Test Conference, pages 1–10. IEEE, Oct. 2008.

[12] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and
A. Zaslavsky. Designing Nanoscale Logic Circuits Based on
Markov Random Fields. Journal of Electronic Testing,
23(2-3):255–266, Mar. 2007.

[13] R. Rao, D. Blaauw, and D. Sylvester. Soft Error Reduction in
Combinational Logic Using Gate Resizing and Flipflop
Selection. In 2006 IEEE/ACM International Conference on
Computer Aided Design, pages 502–509. IEEE, Nov. 2006.

[14] R. Sarpeshkar, T. Delbruck, and C. Mead. White noise in
MOS transistors and resistors. IEEE Circuits and Devices
Magazine, 9(6):23–29, 1993.

[15] O. H. Schmitt. A thermionic trigger. Journal of Scientific
Instruments, 15(1):24–26, Jan. 1938.

[16] N. Tega, H. Miki, Z. Ren, C. P. D’Emic, Y. Zhu, D. J. Frank,
J. Cai, M. A. Guillorn, D.-G. Park, W. Haensch, and K. Torii.
Reduction of random telegraph noise in High-Ðž /
metal-gate stacks for 22 nm generation FETs. In 2009 IEEE
International Electron Devices Meeting (IEDM), pages 1–4.
IEEE, Dec. 2009.

[17] J. Von Neumann. Probabilistic logics and the synthesis of
reliable organisms from unreliable components, 1956.

[18] A. Wang and A. Chandrakasan. A 180-mV subthreshold FFT
processor using a minimum energy design methodology.
IEEE Journal of Solid-State Circuits, 40(1):310–319, Jan.
2005.

[19] Y. Ye, C.-C. Wang, and Y. Cao. Simulation of random
telegraph Noise with 2-stage equivalent circuit. In 2010
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 709–713. IEEE, Nov. 2010.

44

