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ABSTRACT
Noise analysis in nonlinear logic circuits requires models that take
into account time-varying biasing conditions. When considering
thermal noise, which moves the circuit away from its equilibrium
point, a correct modeling approach has to go beyond the additive
white Gaussian noise (AWGN) used in classical noise analysis.
Even when accurate models are available, running standard Monte-
Carlo simulations that will expose rare soft errors may still be com-
putationally prohibitive. Probabilistic methods are often preferred
for estimating the failure rate. However, these approaches may not
provide any insight about the dynamic response to noise events.
In this paper, we target both problems in the sub-threshold logic
application domain. We first provide a time-domain model for fun-
damental, technology–independent thermal noise in sub-threshold
circuits. Then, we use this model to generate noise input files
for SPICE transient analysis. The effectiveness of the approach
is demonstrated using 7nm FinFET predictive technology models
(PTM) for an inverter and a NAND gate.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development— Model-
ing methodologies

Keywords
thermal noise,noise analysis,time-domain simulation,CMOS logic
circuits,sub-threshold circuits

1. INTRODUCTION
The classical approach to modeling thermal noise in electronic

circuits assumes that the magnitude of the noise is small enough
to consider linear response. The assumption of linearity, however,
cannot always be justified in logic circuits, especially when operat-
ing in the sub-threshold regime in which the supply voltage VDD
is kept below the threshold voltage of the transistors[3][5]. In these
operating conditions, the number of electrons in the channel is so
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small that even small fluctuations can have a pronounced impact on
the circuit biasing point.

Therefore, noise analysis for nonlinear logic circuits requires us-
ing models that take into account the time dependence of the circuit
biasing conditions. The authors of [14] and [13] have shown that
taking time-varying biasing conditions when computing the cap-
ture and emission rates in random telegraph signal (RTS) noise, can
lead to much more accurate models. Their results are useful for ob-
taining improved spectral noise analysis. The authors of [12] have
defined an analytical model for thermal noise. Their approach con-
siders the load capacitor of an inverter as a queue in which the ar-
rival and departure rates are modeled after the forward and reverse
drain currents of the transistors. This representation is derived from
Sarpeshkar’s fundamental work [17] in which the author presented
a unified model for thermal noise, viewed as two-sided shot noise
process. A queue representation of the output current fluctuations
was then used for computing the probability of a soft error in sub-
threshold operation. More recently, similar approaches [8][9][10]
have been used for modeling the error rate of flip-flops both in
sub-threshold and above-threshold operation for end-of-roadmap
CMOS technology.

We note that all these works have focused on the analysis of ther-
mal noise in the frequency domain by studying the probability of
soft error events. While this has led to some interesting results,
we still lack a time-domain framework necessary for capturing the
dynamic response to noise in nonlinear circuits. In this paper, we
extend the same unified model for thermal and shot noise [8][9][10]
to the time domain by modeling the noise fluctuations as a stochas-
tic process.

Our approach requires an understanding of how the statistics of
the Poissonian processes describing the charging and discharging
rates are affected by the time-varying physical characteristics of
the devices. While creating an accurate model for this stochas-
tic process is feasible, the greater challenge is creating one that is
computationally-affordable, such that it can be used for simulations
over relatively long time frames to capture rare errors that cannot
be seen in standard Monte Carlo simulations. This is particularly
desirable when doing repeated simulations for design exploration.

For example, if we were to apply this model directly to SPICE
circuit simulations, we would need to run a transient analysis in the
time range of seconds with time steps on the order of picoseconds,
in order to guarantee resolution greater than the fastest response
time of the circuit, with the hope of encountering some rare noise
pattern that may trigger a soft error in the circuit. Even by employ-
ing Monte Carlo methods, this approach would make simulation
times too long to be of any practical use.

Instead, our approach is to use a two-step method in which we
first look for rare failure-inducing events in the form of stochastic

45

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2742060.2742066&domain=pdf&date_stamp=2015-05-20


current fluctuations using a fast ad-hoc simulator and then extract
the desired portion of the time series to simulate the fault in SPICE.
As a result, we can potentially compress simulated times of seconds
down to the microsecond scale. In addition, our approach allows us
to simulate for rare noise events in a matter of a few hours, rather
than weeks. We demonstrate the effectiveness of our approach,
both in terms of accuracy and simulation time, using 7nm FinFET
models.

The remainder of the paper is organized as follows. In Section 2
we briefly review the analytical description of thermal noise in a
CMOS transistor as a two-sided Poisson process, as was first shown
in [12]. We then extend the analysis in Section 3 by studying the
effect of the response time on the noise amplitude. Once we have
established the features of the time-domain model, in Section 4
we describe the implementation of the model for a CMOS inverter
and a NAND gate using 7nm FinFET predictive technology models
(PTM)[18][16]. The results for both gates are validated against the
statistical expectations derived from Monte Carlo simulations. In
Section 5, we present the our simulation framework and provide
some examples showing how this approach preserves the dynamic
properties of thermal noise and allows speeding up time-domain
SPICE noise simulations.

2. TWO-SIDED POISSON SHOT NOISE
The effect of thermal noise in a logic gate can be explained con-

sidering the fluctuations of the charge in the load capacitor Cout. If
we consider the inverter in Figure 1, the mean flow of electrons in
the load capacitance is determined by the equilibrium current flow-
ing in the transistors. In sub-threshold, this current is given by:

ID = I0 exp
( qVgs
mkT

)
exp
(qVdsλD

kT

)[
1− exp

(
−qVds
kT

)]
(1)

where λD is the DIBL parameter [20] and m is the ideality factor.
Due to thermal agitation of the carriers, the charge stored in Cout
is not constant. The number of electrons leaving or arriving at the
output node is a Poisson distributed random variable and fluctuates
in time. We can therefore describe the fluctuations of electrons at
the output node as the result of four Poisson processes whose rates
are associated with the transistor currents. Each transistor in the
inverter has two rates associated with it, one for the forward cur-
rent and one for the reverse current. For our subthreshold operated
gates, the supply voltage VDD ≈ 180mV . These rates can be con-

λpµp

λn µn

VDD

Vin Vout

Cout

Figure 1: Inverter rates for NMOS and PMOS transistors.

veniently expressed in number of electrons per picosecond [12]:

µn =
I0
q

exp
(qVoutλD

kT

)
exp
( qVin
mkT

)
× 10−12 (2)

λn = µn exp
(−qVout

kT

)
(3)

λp =
I0
q

exp
(q(VDD − Vout)λD

kT

)
exp
(q(VDD − Vin)

mkT

)
× 10−12

(4)

µp = λp exp
(−q(VDD − Vout)

kT

)
(5)

In these formulas we use λ for the rates of the processes charging
the capacitor and µ for the rates discharging the capacitor. A prop-
erty of the Poisson processes allows us to simplify the notation fur-
ther. If we consider two Poisson processes with rates λ1 and λ2, the
cumulative number of events associated with the two processes is
still a Poisson process with rate λ = λ1+λ2. Then, we can assume
one Poisson charging process with arrival rate λ = λn + λp and
one Poisson discharging process with departure rate µ = µn + µp.

This final form shows that the thermal noise fluctuations are in
fact, the result of two competing Poisson processes. In ideal con-
ditions, the two logic states “1” and “0”, correspond to having full
charge or zero charge on the output capacitor. Random fluctuations
in the electron population for the two equilibrium states change the
charge stored in the capacitor and can lead to a switch in the output
logic state if the excursion from the equilibrium is large enough.
This mechanism was described in [8] using a probabilistic frame-
work based on 2–D Markov chain for analyzing sub–threshold flip–
flops and extracting the probability of soft error, i.e., finding the
probability of going from the correct stable state to the other as
an effect of noise fluctuations. However, it does not help in char-
acterizing the transient behavior of the circuits in the presence of
noise. Our goal is to provide an alternative approach that can be
used to apply the results from the two-sided shot noise model to
time-domain simulations. The value of the rates as extracted di-
rectly from the drain current (1) require a good match with the cur-
rents from the BSIMCMG model we used in our simulations. The
curve fitting obtained by applying the DIBL correction is shown in
Figure 2. We used λ0 = 0.07 and m = 1.2 for the NMOS and
λ0 = 0.08 and m = 1.3 for the PMOS. The mismatch at low
values of Vds are due to the fact that we are still considering a rel-
atively simple model for the sub–threshold current, which does not
incorporate all the parameters used in the BSIMCMG model. For
our simulator, we decided to implement all current and parameter
models as a look–up table. This approach helps speeding up the
calculations since the parameters have to be computed only once.
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Figure 2: Comparison of the IV curves from the BSIMCMG 7nm
FinFET model (solid lines) and the sub–threshold current model
from (1) (dashed lines).
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Should more accuracy be needed, we could still get rid of the mis-
match from the curve fitting and implement the look–up tables us-
ing parameters extracted directly from SPICE simulations. In our
analysis the parameters’ calculation were not noticeably affected
by the curve fitting approximation. Therefore, we chose to use the
simpler current model. The details of the implementation will be
discussed in Section 4.

3. ORNSTEIN–UHLENBECK PROCESS –
THE EFFECT OF RESPONSE TIME ON
NOISE AMPLITUDE

In this section we show how the response time of the circuit af-
fects the final noise amplitude in the time-domain. The Ornstein–
Uhlenbeck (OU) process [6][21] was first introduced for the study
of Brownian motion. Its current applications span from the study
of neural spikes to the representation of stock volatility in finan-
cial economics [1][19]. The use of an OU process to describe this
circuit essentially extends a single-pole infinite-impulse-response
(IIR) model of the circuit rigorously into a statistical description.
As we have already established in the previous section, the mean
current into the inverter output node is Itot = Iλ − Iµ. How-
ever, the fluctuations in the two Poisson charging and discharging
processes are additive and that sum ISHOT = |Iλ|+|Iµ| is propor-
tional to the variance of the shot noise current in the node. To do
a time domain simulation of the circuit responding to a process of
this type, one selects a small time interval, say ∆t, and computes
as a random variable a possible estimate the number of electrons
entering the node Xt in that interval and from that computes the
next output voltage value using the OU process model. This action
repeats to produce a time series of output voltages. If ∆t is suffi-

ciently large (
√
X2
t ≥ 50), then these pulses will resemble a Gaus-

sian process and the calculation can be done very efficiently. How-
ever, if ∆t is comparable to or larger than the instantaneous time
constant of the circuit, then the circuit node voltage will relax back
to its original value between pulses and this is not physically ac-
curate. This situation is well described by the Ornstein–Uhlenbeck
process [2].

Consider the time series describing the amplitude of the shot cur-
rent pulses Xt in terms of the number of electrons at each time
t = n∆t, where ∆t is the unit time used for counting the number
of events from the Poisson distribution. Consider also the instanta-
neous time constant of the circuit

τ =
1

gdsNMOS + gdsPMOS
× Cout,

whereCout is the total capacitance at the output node including any
input capacitance of the following stages. The resulting thermal
voltage noise process Vt is related to Xt by a factor ∆V = q

Cout

which is the voltage change due to a single electron on the ca-
pacitor. In our simulation ∆V = 1.1mV . The OU process de-
rives from the solution of a stochastic differential equation of the
form [1]:

dv(t) = −λv(t)dt+ dW (t) (6)

where W (t) is a Lévy process[7]. Examples of Lévy processes are
the Wiener process, used for describing the Brownian motion, and
the Poisson process. The discrete time solution of Equation 6 can
be expressed as:

V0 = 0, Vt = Vt−1 exp
(
− t
τ

)
+Xt

q

Cout
. (7)
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Figure 3: Charging rate λ as a function of the input voltage Vin for
a CMOS inverter. The rate is expressed in electrons per picosecond.

With this expression for how the time response of the circuit com-
bines with the noise current time series, we can integrate this infor-
mation with the rates computed above to get the standard deviation
of the noise as a function of the biasing point, as explained in the
next Section.
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Figure 4: Standard deviation of the output noise voltage as a func-
tion of Vin. The dashed lines represent the theoretical minimum
for thermal noise (kT/C)1/2 .

4. EXTENDING THE MODEL TO
TIME DOMAIN APPLICATIONS

In Section 3, we have presented the basic concepts that allow
us to study the statistical behavior of thermal noise in the time-
domain. Previous works [12][8][9][10] that have been based on the
same two-sided Poisson noise have used inverters or flip-flops. In
all these cases, the output noise results from the contribution com-
ing from two transistors. In this Section we first apply the results
from Section 3 to a CMOS inverter and then we study how the same
model can be extended to more complex gates. We have based our
calculations on a 7nm FinFET predictive technology model (PTM).
For all the examples show in this work, the capactive load is equiv-
alent to drain capacitances of the first stage inverter and the gate
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capacitances of the load inverter. Both inverters were sized using 2
fins for NMOS and PMOS alike. The resulting Cout is 149aF at
VDD = 180mV , hence, we assumed a total number of electrons
of roughly 168 when Vout = 180mV .

Figure 3 shows the charging rate for a CMOS inverter at differ-
ent temperatures. While Figure 3 shows lower rates at Vin = VDD

2
,

the noise standard deviation will be the highest at this point. The
actual standard deviation of the noise can be obtained combining
the Poisson rates with the instantaneous time constant of the circuit
as a function of the biasing point. This can be done by counting
the average number of electrons in the time constant at a certain
input voltage Vin and taking the square root of this average. Fig-
ure 4 shows the resulting noise rms voltage as a function of the
input voltage Vin. It is important to notice how the standard devia-
tion curves never go below the theoretical minimum thermal noise√
kT/C which would result from the classical noise analysis ap-

proach [17][22]. The curves in Figure 4 show the standard devia-
tion of the noise in equilibrium conditions, that is, when the input
and output voltage mean values match the voltage transfer curve of
the inverter. These curves would depict the noise behavior when
the circuit is changing state. A much more interesting situation is
shown in Figures 5a and 5b. These two plots represent the case in
which the input voltage is at a fixed value and the noise excursion
is caused by variations of the output voltage. The asymmetry in the

VDD

λp1 µp1 λp2 µp2

µn λn

VA VB

VA

VB

Vout

Vx

Figure 6: NAND rates. The transistor stack adds a degree of free-
dom in the calculation of the total noise.

plots from Figure 5a shows how the circuit reacts when it is away
from its equilibrium point. For example, the plot on the left shows
the case in which Vin = 180mV . The equilibrium point, where
the charging and discharging rates match, is at Vout = 0V , as ex-
pected. For negative values of Vout, the charging rate becomes
greater than the discharging rate, as the circuit wants to pull the
output node back to its stable point. The same behavior appears for
positive values of Vout, this time with the discharging rate being
greater than the charging rate.

The simulation framework used for modeling the inverter can
be easily scaled up to more complex multi-input gates. Figure 6
shows the configuration for a NAND gate. In our model, we assume
that the total rate for either the charging or the discharging process
is made up of three components (i.e., the currents from the two
PMOS transistors and the current from the NMOS transistor at the
top of the stack). While we do not directly consider the bottom
transistor in the pull-down stack for the count of the total rate, its
influence in the total noise is given by how the rates of the top
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Figure 7: Standard deviation of the output noise voltage as a func-
tion of the two inputs VA and VB .

transistor are affected by the voltage Vx. This is made more clear
by looking at Figure 7. When VB is high and VA is varying, the
bottom transistor is on and the pull-down network behaves as in
the case of the inverter with the rates governed by the VA. This
means that only the forward rate is affected. When VA is high and
VB is varying, we observe a much higher peak noise. This behavior
can be explained by considering that in the latter case, the rates are
both controlled by the voltage Vx which varies with VB .

5. NOISE SIMULATOR
Based on the model description from Section 4, we built our

noise simulator. This model was entirely written in C++ with the
goal of being able to simulate noise time series in the range of mil-
liseconds to seconds. The algorithm flow can be summarized as in
Figure 8. Without loss of generality let us consider the case for an
inverter. We start by initializing the parameters at a stable point in
the transfer curve of the inverter. For the desired Vin, Vout pair,
we extract the noise parameters λt, µt and τt. At this point we
are ready to start the noise samples generation. We generate the
Poisson events by counting the inter–arrival times in a period of
50ps. This value has been chosen so that the integration time is
always less than the time constant of the circuit. Since the value of
the Poisson rates changes during the simulation, we need to gen-
erate the time series from a non–homogeneous Poisson process. A
non–homogeneous Poisson process is defined by a time varying
rate function λ(t). The authors of [11] have shown an efficient way
to generate Poisson samples having a time dependent rate func-
tion. The algorithm starts by generating Poisson samples in the
interval (0, T ] with rate λ∗ ≥ λt ∀ t ∈ (0, T ]. Then, each
sample X∗

i from the series X∗
1 , X

∗
2 , X

∗
3 , . . . X

∗
n is rejected with

probability 1− λi/λ∗. The samples that survive this thinning pro-
cedure, constitute a non–homogeneous Poisson process with with
rate function λ(t). For our simulator, we generate samples at the
highest rate λmax and then add each event to the total count with
probability λt/λmax[4]. We get the cumulative count at each time–
step by subtracting the discharging process count from the charging
process count. This value is then translated into an equivalent volt-
age step ∆V and applied to the time series as shown in Equation 7.
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Figure 5: Rates and standard deviation of an inverter as a function of the output voltage Vout. For the charging and discharging rates, the
equilibrium is reached when the values of the two rates are matched.
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Figure 8: Algorithm flow for the noise simulator.

For each new value of the output voltage, we update the param-
eters λt, µt and τt, and we proceed to the next iteration of the
loop. This last step guarantees that the new noise sample will take
into account the deviation from the equilibrium condition. An im-
portant requirement of our simulator is to be able to generate long
time series without incurring in any periodic pattern. We decided
to use the Marsenne-Twister engine [15] which guarantees a period
of 219937 (well above our simulation needs). In Figure 9 we com-
pare the accuracy of our approach against SPICE and also evaluate
the importance of using the OU process in our approach. In partic-
ular, the purple traces in Figure 9 show the the voltage time series
results generated from our model (i.e. as described in Equation 7).
We compare this against the orange traces in Figure 9 which show
the response of the SPICE circuit to shot–noise current pulses that
were generated from the net electron count derived by our simula-
tor. These current pulses were injected in the output node of the
inverter to simulate the actual noise response of the circuit. Finally,
the grey traces in Figure 8 show the time series composed of only

the voltage steps Xtq/Cout (i.e., ignoring the OU process). From
our results in Figure 9 we see that our approach give results in very
close agreement to SPICE and the OU process is an important com-
ponent to achieve accurate results. The performance can be tested
on the comparison between the time needed by our noise simula-
tor to generate 100µsec of noise samples and the time it takes for
SPICE to run a full transient simulation on the same time interval.
Our simulator generated the samples in 18.6sec while the SPICE
simulation took in total 14.4 minutes, showing that simulation time
can be improved by a factor of 47×. Moreover, our simulator takes
on average a mere 4 hours to produce a 5σ event. By comparison,
SPICE would have to run for almost 10 days to provide the same
result. In order to take advantage of this performance improvement,
we propose to use our simulator for exploratory analysis of noise
transients. By running our simulator for long periods of time, we
can extract noise transients from long noise time series, and use
SPICE to simulate around rare noise samples in a time range of a
few time constants.

6. CONCLUSIONS
In this work, we presented a framework for improving the simu-

lation efficiency of thermal noise in the time domain, starting from
the unified shot-thermal noise model. The Ornstein–Uhlenbeck
process has been used to capture the correct dynamic response of
the circuit while we have guaranteed the correct model behavior to
varying biasing conditions using non–homogeneous Poisson pro-
cesses for modeling the charging and discharging electron flows.
Our model can noticeably decrease the simulation time of long
thermal noise time–series allowing to capture rare events not only
significantly faster than conventional SPICE simulations, but also
with comparable physical accuracy. For future work we plan to use
our approach as an easier method for evaluating the response of the
circuit to rare thermal noise patterns. This will require enabling the
simulator to analyze larger and more complex logic circuits. We
note that with our current focus on thermal noise, we have not been
able to directly compare our results to that of other published works
such as [14] and [13] since these works promise non-Monte Carlo
methods for modeling nonstationary low–frequency noise phenom-
ena which are fundamentally different from thermal noise. How-
ever, we also plan to extend our framework to other noise sources
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Figure 9: Comparison of the time series generated by our simulator and the SPICE transient response to the shot–noise currents. We used 3σ

and 5σ thresholds for the noise events, where σ = (kT/C)1/2

.

such as RTS noise, providing better conditions for conducting a
comparative study with other models.
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