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ABSTRACT
Objectives: Mechanical Affective Touch Therapy (MATT) is a safe, novel form of noninvasive peripheral nerve stimulation.
Although mechanical stimulation activates nerves, we know little about its impact on psychiatric symptoms and their underlying
cortical mechanisms. We examined the effects of open-label MATT on resting state functional connectivity (RSFC) and its rela-
tionship with anxiety and affective symptomatology (clinical results in separate report).

Materials and Methods: A total of 22 adults with an Axis I anxiety disorder were recruited from the community. After two initial
sessions assisted by research staff, participants self-administered 20-minute sessions of MATT at home at least twice daily for four
weeks. Self-report measures of mood and anxiety severity were collected at baseline, two weeks, and four weeks. Resting state
functional magnetic resonance imaging was collected before the initial MATT session (n = 20), immediately after the first session
(n = 18), and following four weeks of MATT (n = 14). Seed-based whole-brain functional connectivity analyses identified brain
connectivity patterns correlated with responsiveness to MATT. Seeds were based on Neurosynth meta-analytic maps for “anxiety”
and “pain” given MATT’s hypothesized role in anxiety symptom amelioration and potential mechanism of action through C-tactile
afferents, which play an important role in detecting pain and its affective components. Connectivity results were corrected for
multiple comparisons (voxel p < 0.005, cluster p-FDR < 0.05).

Results: Baseline RSFC is predictive of symptom improvement with chronic MATT. Acute increases in insula connectivity were
observed between mid-cingulate cortex and postcentral motor regions following the first MATT session. Chronic MATT was
associated with increased connectivity between pain and anxiety regions of interest (ROIs) and posterior default mode network
(DMN) regions involved in memory and self-reflection; the connectivity changes correlated with decreases in stress and
depression symptoms.

Conclusions: MATT is associated with alterations in RSFC in the DMN of anxiety disorder patients both acutely and after long-
term administration, and baseline RSFC is predictive of post-treatment symptom improvement.
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INTRODUCTION

Anxiety disorders are the most prevalent mental health–related
illnesses in the United States, affecting approximately 19.1% of
adults annually1 and 11.3% of Americans in their lifetime.2

Furthermore, disorders such as generalized anxiety disorder are
universally widespread across the globe, and are associated with
severe social, occupational, and physical impairment.3–6 Anxiety
disorders increase risk for chronic diseases, including diabetes,
cardiovascular disease, and asthma,7 and are linked with engage-
ment in maladaptive behaviors like smoking and heavy drinking.8,9

They are also associated with greater use of disability days and
decreased work productivity, placing a significant burden on the
economy and health care system.10

Anxiety disorders are typically treated using a combination of psy-
chotherapy andmedication.11Among thosewhocomplete a courseof
standard treatment for anxiety, symptom improvement, as measured
by self-report questionnaires or clinician administered interviews, is
inadequate (eg,<50% reduction of anxiety symptoms) in one-third of
patients.11 Given the substantial burden of undertreatment on
patients and on society, there is a pressing need for novel anxiety
disorder treatments. Noninvasive peripheral nerve stimulation is one
promising alternative treatment for anxiety disorders.
All nerves that branch out of the spinal cord and brain are

considered part of the peripheral nervous system. During periph-
eral nerve stimulation, electrical or mechanical energy is typically
externally delivered to the dermal area innervated by targeted
nerves or their branches,12 but in some cases (such as implanted
vagus nerve stimulators), electrodes are applied directly to the
nerve during a surgical procedure. A popular form of peripheral
nerve stimulation is transcutaneous electrical stimulation, which
reduces chronic lower back pain and acute postsurgical pain13,14;
initial findings indicated it may also improve mood and anxiety
disorder symptoms,15,16 perhaps through activation of afferent
fibers that send signals to relevant components of the brain.
Mechanical (acoustic) stimulation of peripheral nerves is another
noninvasive approach and is relatively understudied regarding
effects on underlying physiological systems or potential thera-
peutic effects. Early studies demonstrated acoustic stimulation with
ultrasound (>20 kHz) stimulates A-beta (Aβ) peripheral nerves,17,18

and low-frequency (<20 kHz) acoustic stimulation of somatosen-
sory mechanoreceptors enhances proprioception.19

Mechanical Affective Touch Therapy (MATT) is a novel noninva-
sive peripheral mechanical nerve stimulation device developed by
AffectNeuro, Inc, for treatment of anxiety disorders. The prototype
of this wearable device resembles a commercially available MP3
.neuromodulationjournal.org © 2021 The Authors. Published b
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player but delivers gentle vibratory stimulation (via insulated
transducers) to small areas of skin behind each ear on the mastoid
processes. The device is configured with an amplifier and piezo-
electric elements or actuators (together, transducers) that enable
an MP3-like signal generator to deliver gentle vibrations (<20 kHz).
Stimulation is delivered as an isochronic 10 Hz wave that cycles as
two seconds on and two seconds off. The manufacturer’s pilot data
indicate that stimulation using these parameters induces a relaxed
state and increased occipital alpha oscillations.20 Qualitatively,
these vibrations resemble those from an electric toothbrush.
Although the mechanisms of vibratory stimulation’s effect on

higher level proprioception are underspecified, it may involve
Piezo2 ion channels, Merkel-cell mechano-transduction, and
peripheral Aβ and unmyelinated C-tactile (CT)-afferent nerves.21

CT-afferents are involved in both discriminative and affective
touch.22,23 Discriminative touch allows for the identification and
detection of stimuli through vibration, texture, and pressure,
whereas affective touch conveys information about the “pleasant-
ness” of stimuli through gentle, slow stroking.22,23 Specifically,
unmyelinated CT fibers respond to gentle vibrations and touch,
firing when stroked at rates perceived as soothing or pleasurable.24

CT fibers also detect “secondary pain,” which has a strong affective
component, impacting attention to injury and behavioral responses
to trauma.25,26 Although their main function is proprioception,
myelinated Aβ fibers are also implicated in the detection of
neuropathic pain, such as mechanical allodynia, after damage to
the nervous system.27,28 Both Aβ and CT afferents relay tactile and
pain signals to somatosensory cortex (S1 and S2) and emotion
regions, including the insula.29–31

Integrating emotion and somatosensory signals is a core insula
function essential for interoception and embodied sensation.32

Insula function, however, is often disrupted in mood and anxiety
disorders and associated with hypo- or hyper-interoception.33,34

Anxiety also exacerbates hyperalgesia in people with acute and
chronic pain, likely reflecting activation of overlapping pain and
anxiety circuits involving the hippocampus, cingulate cortex,
amygdala, and insula.35,36 Interoceptive training has been shown to
reduce somatic symptoms and anxiety in nonanxious participants37

and is a cornerstone of mindfulness-based approaches to stress
and anxiety reduction.38,39 However, these interventions may be
less effective for those with clinical mental health struggles who
may find attending to the body’s internal signals aversive.40 We
hypothesized that modulating somatosensory circuits via an
external device may engage pain and anxiety circuits, including the
insula, but be more tolerable than interoceptive training for those
with distressing clinical symptoms.
y Elsevier Inc. on behalf of the
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Understanding the relationship between peripheral nerve stim-
ulation (through affective touch) and cortical function is essential
for establishing the MATT device’s possible mechanism of thera-
peutic action; mechanistic insights will be critical for later optimi-
zation of MATT. Although MATT’s feasibility and efficacy are under
exploration, studies investigating similar devices provide insights.
Sham-controlled studies indicate transcutaneous vagus nerve
stimulation (tVNS) increases magnetic resonance imaging (MRI)
blood oxygen level-dependent (BOLD) activation in the insula as
well as BOLD decreases in the thalamus, posterior cingulate cortex,
and parahippocampal gyrus.41 These patterns have been replicated
in multiple cohorts of healthy humans.42,43 Following tVNS treat-
ment of depression, functional connectivity increases between the
precuneus, orbital prefrontal cortex, and select regions of the DMN
(ie, the medial prefrontal cortex, cingulate cortex, and bilateral
parietal cortex), have been shown to correlate with symptom
reduction.44

The DMN is a functionally interconnected network of brain
regions associated with introspection,45,46 theory of mind,47

memory retrieval,48–50 and emotion regulation.51 Major DMN
regions include bilateral lateral and medial portions of the temporal
and parietal cortex, the medial prefrontal cortex, hippocampus, and
parahippocampus.52 Clinically, the DMN is implicated in anxiety53,54

and mood disorders.55,56 For example, during emotion regulation,
DMN BOLD signal is blunted in anxious patients compared with the
activation observed in healthy controls.57 Studies measuring func-
tional connectivity, a metric of functional cohesion between brain
regions,58,59 have also found evidence of more robust connectivity
between the DMN and insula in patients with heightened anxiety.60

Because external stimulation of peripheral branches of the vagus
nerve can modulate brain activity in both DMN and insula41–43 in
healthy individuals, mechanical stimulation with MATT may hold
potential for anxiety treatment, given the involvement of both in
anxiety and pain circuits.61 Although certain brain regions have
been implicated in anxiety, no consensus morphometric bio-
markers for anxiety disorders have been established.62,63 MATT also
represents an opportunity to explore potential volumetric bio-
markers for anxiety,64 their responsiveness to peripheral nerve
stimulation, and relationships with RSFC.
We used RSFC to investigate the relationship between a novel

form of peripheral nerve stimulation via affective touch for anxiety
and cortical function. Acute and chronic RSFC effects of MATT in
pain and anxiety circuits were evaluated in a small, heterogeneous
sample of adults with various anxiety disorders in an open-label
trial. We hypothesized that acute changes in connectivity and
neural predictors of treatment response would localize to the DMN.
Moreover, we anticipated that changes in DMN connectivity would
correspond to symptom changes across treatment. We explored
MATT’s effects on morphometrics, and how such changes relate to
RSFC. We also explored potential links between connectivity and
MATT-associated changes in interoception.

MATERIALS AND METHODS
Study Overview
This was an open-label pilot trial designed to explore clinical

effect and potential mechanisms of action of a novel investiga-
tional device for anxiety disorders. All participants received active
MATT using the research prototype device. Resting state functional
MRI and structural MRI scans were obtained at three time points:
immediately before first application of MATT stimulation (T1);
www.neuromodulationjournal.org © 2021 The Authors. Published b
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immediately after 15 minutes of MATT stimulation (T2); and after
completion of a four-week course of daily MATT sessions (T3). We
compared RSFC data from T1 and T2 to evaluate whether acute
changes in functional MRI connectivity correspond to acute
changes in the electroencephalogram (EEG) signal that we
observed during device/parameter development. We compared
RSFC between T1 and T3 to identify connectivity changes following
the full course of treatment. Clinical assessments of anxiety,
depression, and stress symptoms were collected at baseline, week
two midpoint, and study endpoint. Interoception was measured at
baseline and study endpoint.

Participants
Adult outpatients (N = 22) aged 18 to 65 years with a current

Axis I anxiety disorder65 were recruited from the local community,
enrolled, and initiated treatment. Written informed consent was
obtained on forms approved by the Butler Hospital Institutional
Review Board. Participants were required to be medication-free or
on a stable regimen of psychotropic medications (ie, not started a
new medication or changed doses of ongoing medications) for 30
days before the baseline visit and throughout the duration of their
study participation. Participants were excluded if they had been
psychiatrically hospitalized or had attempted suicide within the
previous six months, had MRI safety contraindications, or were
diagnosed with significant neurological conditions or other severe
medical conditions that could limit compliance with study pro-
cedures. All but one of 22 enrolled study participants completed
the baseline MRI session (T1) and had at least one symptom
assessment after initiating treatment; a subset (n = 17) completed
post-treatment MRI scans (T3). In total, 20 participants were
included in T1 RSFC analyses (one participant from the original 21
scanned was excluded because of motion artifacts); 18 participants
were included in T1-T2 analyses (two were excluded because of
motion artifacts from the original 20); and 14 participants were
included in the T1-T3 analyses (17 completed the scan, but three
were removed because of motion artifacts). Differences in clinical
symptoms and demographics among the three MRI analysis groups
were measured using one-way repeated measures ANOVAs.
Diagnostic and Symptom Assessments
Medical/neurological health histories and current medication

regimens were reviewed and recorded at baseline. Confirmation of
current Axis I anxiety disorder was done with the Mini-International
Psychiatric Interview (MINI; Table 1, baseline participant demo-
graphics).66 At least a moderate level of baseline anxiety (Gener-
alized Anxiety Disorder, seven-item scale [GAD-7]67 total ≥10) was
required for eligibility. Participants completed a battery of self-
report scales at pre-treatment baseline, week two, and week four
(or early termination). We selected the GAD-7 total score, which
covers a spectrum of anxiety symptoms, as our primary outcome
measure. We felt this was appropriate given that we had no strong
a priori expectation that MATT’s anxiolytic effects would be specific
to one anxiety subdomain. We did, however, collect a number of
secondary outcome measures to permit initial exploration of
symptom domain effects: the Perceived Stress Scale (PSS),68 the
Beck Depression Inventory (BDI),69 the Depression, Anxiety, and
Stress Scale (DASS),70 and the Multidimensional Assessment of
Interoceptive Awareness (MAIA).71 We analyzed total scores from
the DASS, MAIA, BDI, and PSS, as well as DASS subscale scores for
y Elsevier Inc. on behalf of the
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Table 1. Descriptive and Clinical Data for All Participants (N = 20) in Imaging Analyses (T1).

Demographic and treatment characteristics Mean (SD) or n (%)

Age, mean (SD) 35.80 (14.72)
Women, n (%) 14 (70.00)
High school education or greater, n (%) 19 (95.00)
Race and ethnicity, n (%)
White 15 (75.00)
Black or African American 2 (10.00)
Asian 1 (5.00)
Native Hawaiian or other Pacific Islander 0 (0.00)
American Indian or Alaskan Native 0 (0.00)
Hispanic or Latinx 2 (10.00)

% MATT compliance, mean (SD) 74.50 (33.00)
Number of participants who used MATT a third time per d, n (%) 5 (25.00)
Number of days used for third time, mean (SD) 3.40 (3.78)

% MATT treatment completer, n (%) 15 (75.00)
Major depressive episode, n (%)
Current (past two wk) 9 (45.00)
Past 12 (60.00)
Recurrent 8 (40.00)

Major depressive disorder, n (%)
Current (past two wk) 7 (35.00)
Past 9 (45.00)
Recurrent 9 (45.00)

Anxiety disorders, n (%)
Generalized anxiety disorder (current, past six mo) 19 (95.00)
Panic disorder (current, past mo) 6 (30.00)
Panic disorder (lifetime) 11 (55.00)
Agoraphobia (current) 10 (50.00)
Generalized social phobia (current, past mo) 11 (55.00)
Nongeneralized social phobia (current, past mo) 1 (5.00)

Obsessive compulsive disorder (current, past mo), n (%) 5 (25.00)
Posttraumatic stress disorder (current, past mo), n (%) 3 (15.00)
Antidepressant and antianxiety medications, n (%)
All psychiatric medications 14 (70.00)
Benzodiazepines for anxiety 4 (20.00)

T1, timepoint 1.
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depression (DASS Depression), anxiety (DASS anxiety), and stress
(DASS stress). See Table 2 for scores on symptom assessments in
the total sample (n = 20).

Treatment
The MATT device delivers gentle mechanical stimulation behind

each ear via small (30 mm) piezoelectric disks that are mounted on a
headset. The power and signal are generated from a modified MP3
player that effectively “plays” the signal converted to vibration. The
research team helped participants identify the optimal stimulation
intensity—the just-perceivable vibrational intensity that was
consistently detectable but not uncomfortable. The device’s settings
range from 0 to 20 in arbitrary units. At baseline, participants were
instructed to put on the device and turn it to a high, perceivable level
(eg, 18). They then systematically turned the intensity down by one
level until they reached a point where they could no longer feel the
vibrations. The final intensity was set at one level above this point.
Details regarding device development, parameter selection, and
safety are reported in the device patent.20

The first and second stimulation sessions were administered under
the observation of research staff at the baseline MRI visit and baseline
EEG visit, respectively. Participants were then instructed to self-
administer MATT at home or in other naturalistic settings twice a day
www.neuromodulationjournal.org © 2021 The Authors. Published b
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(20 minutes per session) for four weeks (28 days), with an option to use
MATT a third time each day if needed for acute anxiety or during
anxiety-provoking situations. Treatment length and parameters were
selected based on feasibility and initial pilot data.20 Participants wore
MATT for 15 instead of 20minutes during thebaselineMRI visit because
of timeconstraintsat the scanner. Treatment compliancewasdefinedas
the percentage of completed self-administered MATT sessions out of
the prescribed number of sessions (two sessions per day for 28 days).
Participants who completed the week four symptom assessments and
post-treatment MRI were classified as completers. Participants who
were treated with MATT but who did not complete the final week four
visit were included in the intent-to-treat (ITT) sample; last observation
carried forward (LOCF) scores were used when visit four data were not
collected. Of the 20 participants included in analyses described here, 15
(75%) were completers and the other five (25%) discontinued before
visit four. All individuals in the ITT sample were included in the T1
analyses regardless of completion status.

MRI Data Collection and Preprocessing
All brain scan procedures took place at the Brown University MRI

Facility. The first two scans occurred during a baseline visit, and the
final scan during an endpoint visit (after four weeks of MATT) using
a Siemens 3T MRI Scanner (Erlangen, Germany) and a 64-channel
y Elsevier Inc. on behalf of the
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Table 2. Clinical Measure Scores by Scale for All Participants (n = 20) in
Imaging Analysis (T1).

Scale Mean (SD)

GAD-7
Baseline 14.45 (2.04)
LOCF 8.90 (5.16)
% change: baseline-LOCF −36.82 (36.85)

PSS
Baseline 36.65 (5.51)
LOCF 28.45 (8.21)
% change: baseline-LOCF −22.57 (17.24)

BDI
Baseline 30.30 (7.92)
LOCF 18.15 (12.91)
% change: baseline-LOCF −40.93 (37.18)

DASS
Total
Baseline 57.30 (20.74)
LOCF 35.85 (26.89)
% change: baseline-LOCF −37.16 (36.84)
Depression
Baseline 20.35 (9.37)
LOCF 12.95 (11.98)
% change: baseline-LOCF −39.85 (42.85)
Anxiety
Baseline 14.20 (7.41)
LOCF 8.80 (6.70)
% change: baseline-LOCF −26.12 (58.74)
Stress
Baseline 22.75 (7.71)
LOCF 14.10 (10.12)
% change: baseline-LOCF −36.45 (34.34)

MAIA total
Baseline 2.45 (0.32)
LOCF 2.65 (0.61)
% change: baseline-LOCF 8.12 (0.24)

T1, timepoint 1.
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head coil. Immediately before the first MATT stimulation, a struc-
tural T1-weighted image (TE = 1.69 msec, TR = 2530 msec, FOV =
256 mm2, 1 mm3) was collected. Resting state echoplanar images
were then acquired for ten minutes via whole-brain continuous
imaging in the transverse plane (TE = 30 msec, TR = 1000 msec,
FOV = 192 mm2, 2 mm3, 588 volumes, multiband factor = 4, slice
thickness = 2 mm3, spacing between slices = 2 mm3, 60 slices).
Participants were instructed to lie still and focus their gaze on a
display screen showing a white crosshair in the middle of a black
foreground during rest scans. Participants were removed from the
scanner and had their first MATT stimulation session in a separate
room, after which they returned to the scanner for additional T1-
weighted structural and resting state scans. Following the four-
week course of MATT and final clinical assessments, structural
and resting state scans were repeated.
All MRI data preprocessing steps were executed with the CONN

Toolbox72 (https://web.conn-toolbox.org). Standard MRI pre-
processing steps included slice-time correction, motion estimation
and realignment, normalization of images to Montreal Neurological
Institute (MNI)-152 Atlas space, and spatial smoothing with a 6 mm
full-width half-max gaussian kernel. Additional functional connec-
tivity preprocessing steps were applied to reduce the contribution
of nonneuronal signals and motion on functional connectivity.73,74
www.neuromodulationjournal.org © 2021 The Authors. Published b
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The Anatomical CompCor method75 modeled nonneuronal signals:
five principle components were computed from white matter and
cerebrospinal fluid BOLD time courses. These components were
then regressed from subjects’ preprocessed data along with six
estimated motion parameters (three translational, three rotational),
their first temporal derivatives, and the linear trend. Residuals were
then band-pass filtered (high-pass filtering: 0.008 Hz; low-pass
filtering: 0.09 Hz) before first-level modeling.
Subject-Level Seed-to-Voxel Analyses
Functional regions of interest (ROIs) or functional connectivity

“seeds” were based on construct maps for “pain” and “anxiety” in
Neurosynth (https://neurosynth.org/). Neurosynth76 is a meta-
analytic tool that generates functional connectivity maps for lexi-
cal terms and cognitive processes. The construct “anxiety” was
chosen for ROI extraction given MATT’s hypothesized role in
ameliorating symptoms across a number of anxiety disorders;
“pain” was also selected given MATT’s potential mechanism of
action through CT-afferents. These afferents play an important role
in detecting pain and corresponding affective states. This method
allowed us to remain objective in ROI selection and solely use
empirically based seeds.
To define our ROIs, we thresholded the map of each term using a

minimum z score and extracted clusters of spatially contiguous
voxels. Thresholding the “anxiety” map at z scores >5 yielded two
ROIs centered on the amygdala in each hemisphere. We used a
more stringent threshold (z scores >7) for the “pain” ROIs to
improve cluster separation. This produced bilateral clusters in the
anterior insula and thalamus, and a mid-cingulate ROI crossing the
sagittal midline.
For each seed, we constructed a whole-brain voxel-wise map of

correlations with the seed’s BOLD time-course. These subject-level
maps underwent Fisher R-to-Z transformation to improve confor-
mation to the assumptions of generalized linear models. The seed
maps were entered into second-level analyses of covariance
(ANCOVA; indicated subsequently in the text).
Second-Level Hypothesis Testing and Cross-Validation
Second-level models were constructed to 1) identify pre-treatment

connectivity patterns predictive of subsequent treatment out-
comes; 2) localize acute connectivity changes immediately after
MATT; 3) determine whether acute connectivity changes predicted
treatment outcome, and 4) identify post-treatment correlates of
symptom improvement. All model results were evaluated using a
dual thresholding procedure with an uncorrected cluster-forming
voxel height threshold of p < 0.005 and cluster-level multiple
comparisons correction at p-FDR < 0.05. A leave-one-out cross-
validation analysis was performed for all significant clusters for an
additional level of stringent control. Briefly, on each iteration,
models were reestimated leaving one subject out, and a parameter
estimate (beta weight) was generated for the left-out subject
based on this model. To determine if a cluster cross-validated, we
submitted these estimated weights to a two-tailed t-test against
the mean with alpha set at p < 0.05. Two-tailed t-tests were
selected as a stringent test of cluster cross-validation. We also
excluded clusters if they were present in <80% of cross-validation
masks. Only those results that survived leave-one-out cross-
validation are presented in this report.
To identify clusters predictive of treatment outcomes, we con-

structed continuous variables corresponding to clinical assessment
y Elsevier Inc. on behalf of the
ety. This is an open access article
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scale scores at study endpoint (or LOCF). We then entered seed
maps from the pre-treatment imaging session (T1) into an ANCOVA
model evaluating the between-subjects’ effect of endpoint scores
after covarying for baseline symptom severity.
To localize acute effects of MATT, we compared T1 seed maps

with those collected immediately after MATT delivery (T2), evalu-
ating within-subject change after covarying for baseline symptom
scores. To localize brain regions where acute changes in functional
connectivity were associated with subsequent improvement in
clinical symptoms, we tested the between-subjects effect of post-
treatment symptom change with session (T1 > T2) as the within-
subjects factor. To account for baseline differences in symptom
severity, clinical and interoceptive changes associated with MATT
were operationalized as percent change in scale score (GAD-7,
DASS Total, DASS Depression, DASS Anxiety, DASS Stress, PSS, BDI,
and MAIA Total) from baseline to endpoint. LOCF values were
applied in cases where a participant terminated before week four
assessments.
To identify functional correlates of clinical improvement with

chronic MATT, we tested the significance of the between-subjects
effect of symptom change on pre-treatment versus post-treatment
(T1-T3) seed-to-voxel connectivity.

Morphometry Analyses
Freesurfer (version 5.3, http://surfer.nmr.mgh.harvard.edu/) soft-

ware was used to explore the relationship between functional
connectivity changes associated with MATT response and brain
structure.77 Subjects’ structural images from the T1 and T3 sessions
were preprocessed using the “fsrecon-all” routine. Steps included
skull stripping, volumetric labeling, intensity normalization, tissue
parcellation, registration to Freesurfer’s default spherical atlas
(“fsaverage”), surface extraction, and cortical labeling. For complete
technical details of Freesurfer preprocessing see the following
references.78–84 We examined cortical thickness in the insula and
mid-cingulate85 and subcortical volumes in MNI space in the left
thalamus and amygdala. Metrics were calculated and extracted by
Freesurfer. Volume estimates were adjusted to account for differ-
ences in brain volume. We then used SPSS (version 25, IBM Cor-
poration, Armonk, NY) to compute correlations between subject-
level morphometry values and beta coefficients from the analysis
of functional connectivity changes post-MATT. For this exploratory
analysis, significance was determined using a more liberal one-
tailed p < 0.05 statistical threshold for these bivariate correlations.

RESULTS
Participant Demographics and Clinical Outcomes
No significant differences in clinical symptoms and demographics

were found among the three MRI analysis groups (p > 0.05;
Supplementary Tables 1 and 2). Most participants with imaging data
(n = 20) were taking stable doses of prescribed antianxiety/anti-
depressant medications (n = 14; 70%); the remaining participants
(n = 6; 30%) were not. Of those on medications, four were on stable
doses of benzodiazepines. Supplementary Table 1 contains a
breakdown of clinical and demographic information for each MRI
analysis group. Mean treatment compliance was high (74.50% of
prescribed doses) for participants included in imaging analyses. A
significant relationship was found between treatment compliance
and percent change on the BDI (r = 0.60, p < 0.01, n = 20), but
compliance was not significantly correlated with any other
symptom measure. Further details regarding MATT compliance,
www.neuromodulationjournal.org © 2021 The Authors. Published b
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as-needed MATT dose, and study completion appear in Table 1 and
Supplementary Table 1. Among completers (n = 15), paired t-tests
showed MATT was associated with significant reductions (p < 0.01)
in mean scores for all symptom measures (GAD-7, PSS, BDI, DASS
Total, DASS Anxiety, DASS Stress, and DASS Depression) and a sig-
nificant increase in MAIA Total scores (all p < 0.05) from baseline to
study endpoint. See Table 2 for clinical measure scores by scale for
all participants at baseline and LOCF. Symptom and interoceptive
scale data for each MRI analysis group appear in Supplementary
Table 2.

Predictors of Treatment Outcomes
Stronger positive connectivity between pain and anxiety

regions to the DMN was generally predictive of greater clinical
improvement at treatment endpoint. Functional connectivity of
the left amygdala to DMN clusters in both the right and left
lateral temporal cortex was negatively correlated with LOCF
GAD-7 scores (both cross-validated p < 0.005). Similarly, func-
tional connectivity of left anterior insula to left posterior supra-
marginal gyrus was negatively correlated with post-treatment
PSS scores (cross-validated p < 0.01; Fig. 1), though this part of
the parietal cortex is implicated in executive control networks,
rather than DMN. Stronger positive connectivity between the
cingulate pain ROI and the left precuneus (DMN) was also
associated with post-treatment improvement in DASS Total
composite scores (cross-validated p < 0.001). Closer examination
of DASS by subscale indicated that this relationship was driven
by the reductions in the DASS Stress subscale scores (Fig. 1). All
findings remained significant after covariance for symptom
severity at baseline and for treatment adherence (represented as
percent completed MATT sessions based on participant daily
logs). See Table 3 for additional cluster information.

Acute Changes in Functional Connectivity
We observed increases in right anterior insula functional con-

nectivity immediately after the initial session of MATT stimulation
(Table 4). Weak positive connectivity between the right insula seed
and right middle cingulate cortex and left precentral gyrus
observed at baseline became stronger after MATT (cross-validated
p < 0.001; Fig. 2). Before stimulation, right insula and left precentral
time courses were anticorrelated, but they became positively
correlated after stimulation (cross-validated p < 0.005). Post hoc
tests indicated that these connectivity relationships remained sig-
nificant when baseline clinical symptom severity scores (GAD-7,
BDI, PSS, DASS Total, DASS Stress, DASS Anxiety, DASS Depression,
and MAIA Total) were included as model covariates.

Functional Connectivity and Post-Treatment Symptom Change
Increases in positive functional connectivity between the

cingulate cortex and the left anterior supramarginal cortex after
MATT completion were correlated with decreases in DASS Total
scores (cross-validated p = 0.05). Additional testing conducted
within DASS subscales indicated that this connectivity relationship
was associated with changes in depression (cross-validated
p < 0.05) and stress (cross-validated p = 0.06), but not with changes
on the anxiety subscale (Fig. 3, Table 5).

Exploratory Structure-Function Correlations
Our morphometry results preliminarily indicate that the thick-

ness of cortical structures in circuits associated with pain may
y Elsevier Inc. on behalf of the
ety. This is an open access article
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Figure 1. Pre-treatment functional connectivity seed-to-cluster pairs associated with post-MATT symptom improvement (T1). a. Sagittal, coronal, and axial repre-
sentations of the left anterior insula seed derived from Neurosynth. b. Superior view of functional connectivity of the left anterior insula seed (a) to the left posterior
supramarginal gyrus (PSG) cluster (circled in yellow) negatively correlated with post-treatment PSS scores (cross-validated p < 0.01). c. Sagittal, coronal, and axial
representations of the bilateral cingulate cortex seed derived from Neurosynth. d. Superior view of functional connectivity of the cingulate cortex seed (c) to the left
precuneus as associated with post-treatment improvement in total DASS scores (cross-validated p < 0.001). e. Superior view of the same pattern of functional
connectivity as seen in d however, this is associated with post-treatment improvement in DASS Stress scores (cross-validated p < 0.001). All neuroanatomical images
were derived using CONN toolbox. [Color figure can be viewed at www.neuromodulationjournal.org]

MATT EFFECTS ON FUNCTIONAL CONNECTIVITY
influence functional response to MATT. Anterior cingulate-to-
anterior supramarginal functional connectivity—associated with
DASS Depression scores post-MATT—was negatively correlated
with cortical thickness in both the right insula (r(14) = −0.48,
p < 0.05) and the left cingulate (r(14) = −0.51, p < 0.05).
DISCUSSION

This study examines the impact of noninvasive transcutaneous
mechanical transduction on brain connectivity. We examined the
relationship between changes in mood/anxiety symptoms and
Table 3. Pre-Treatment Functional Connectivity Relationships Associated With P

Scale Seed-to-cluster pair Pea

GAD-7 L. amygdala-R. AMTG +60
L. amygdala-L. planum polare −48

PSS L. anterior insula-L. PSG −50
DASS total Cingulate cortex-L. precuneus −08

L. thalamus-R. MTP +44
DASS anxiety L. anterior insula-L. PSG −50
DASS stress L. amygdala-L. STG −44

Cingulate cortex-L. precuneus −08
L. thalamus-L. PMTG −60

AMTG, anterior middle temporal gyrus; FDR, false-discovery rate; L, left; MTP, me
supramarginal gyrus; R, right; STG, superior temporal gyrus; T1, timepoint 1.

www.neuromodulationjournal.org © 2021 The Authors. Published b
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RSFC in individuals receiving peripheral nerve stimulation with the
MATT device—a novel acoustic, noninvasive mechanical stimula-
tion device designed to treat anxiety disorders. Broadly, these
preliminary results indicate that 1) MATT may be associated with
acute modulation of pain and anxiety networks, and 2) that
changes in connectivity between pain and internal mentation
networks may influence clinical response to mechanical
stimulation.
As hypothesized, more robust pre-treatment functional connec-

tivity between pain and anxiety regions and the DMN predicted
superior treatment outcomes. Previous studies found that stronger
connectivity between these networks is associated with anxiety
ost-MATT Symptom Improvement (T1).

k MNI coordinate Cluster size Cluster p-FDR

−08 −12 280 <0.0001
−02 −20 98 <0.05
−42 +48 317 <0.0001
−58 +58 315 <0.001
+20 −38 109 <0.05
−42 +36 335 <0.0001
−14 +00 135 <0.05
−58 +60 267 <0.01
−38 −12 173 <0.01

dial temporal pole; PMTG, posterior middle temporal gyrus; PSG, posterior
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Table 4. Clusters Associated With Acute Changes in RSFC After Initial MATT Administration (T1-T2).

Scale Seed-to-cluster pair Peak MNI coordinate Cluster size Cluster p-FDR

GAD-7 R. anterior insula-L. PG −38 −24 +60 365 <0.00001
R. anterior insula-R. MCG +06 −06 +38 216 <0.001

PSS R. anterior insula-L. PG −40 −26 +58 411 <0.000001
R. anterior insula-R. MCG +06 −06 +38 215 <0.001

BDI R. anterior insula-L. PG −38 −28 +60 356 <0.00001
R. anterior insula-R. MCG +06 −06 +38 225 <0.001

DASS depression R. anterior insula-L. PG −32 −30 +54 380 <0.00001
R. anterior insula-R. MCG +06 −06 +38 219 <0.001

DASS anxiety R. anterior insula-L. PG −38 −28 +60 366 <0.00001
R. anterior insula-R. MCG +06 −06 +38 193 <0.001

DASS stress R. anterior insula-L. PG −38 −28 +60 381 <0.00001
R. anterior insula-R. MCG +06 −06 +38 214 <0.001

MAIA total R. anterior insula-L. PG −38 −28 +60 381 <0.000001
R. anterior insula-R. MCG +06 −06 +38 205 <0.001

FDR, false-discovery rate; L, left; MCG, middle cingulate gyrus; PG, precentral gyrus; R, right; T1, timepoint 1; T2, timepoint 2.
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severity.86,87 In this study, we found that stronger inter-network
connectivity predicted superior reduction in anxiety and stress
symptoms. Specifically, stronger connectivity between the amyg-
dala (“anxiety” seed) and the lateral temporal cortex at baseline was
linked to greater anxiety reduction following a four-week course of
MATT. Similarly, stronger functional connectivity between the
insula (“pain” seed) and the precuneus (DMN) was associated with
larger decreases in stress. Although DMN regions generally
Figure 2. Seed-to-cluster pairs associated with acute changes in RSFC after initial M
right anterior insula seed derived from Neurosynth. b. Positive connectivity between
right mid-cingulate cortex (medial view) while controlling for baseline GAD-7 scores
gyrus and right mid-cingulate cortex clusters while controlling for baseline GAD-7 sco
can be viewed at www.neuromodulationjournal.org]
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contribute to internally focused cognition, functional fractionations
of this network link lateral temporal DMN to social cognition, and
midsagittal DMN to affect and memory.88 We speculate that
stronger connectivity between anxiety regions and the DMN may
be associated with memory capacity through increased cross-
network functional integration.89,90

In contrast to our a priori expectations based on observations
from tVNS,41 we did not observe functional connectivity changes
ATT administration (T1-T2). a. Sagittal, coronal, and axial representations of the
the right anterior insula seed (a) and the left precentral gyrus (lateral view) and
(cross-validated p < 0.001). c. A combined superior view of the left precentral
res. All neuroanatomical images were derived using CONN toolbox. [Color figure
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Figure 3. Seed-to-voxel functional connectivity clusters associated with percent change in symptom improvement after MATT treatment (T1-T3). a. Sagittal, coronal,
and axial representations of the bilateral cingulate cortex seed derived from Neurosynth. b. Lateral view of functional connectivity between the cingulate cortex seed
(a) and the left anterior supramarginal gyrus (ASG) correlated with decreases in total DASS scores after MATT completion (cross-validated p = 0.05). c. Lateral view of
the same pattern of functional connectivity as seen in b, however, this is correlated with decreases in DASS Depression scores after MATT completion (cross-validated
p = 0.06). All neuroanatomical images were derived using CONN toolbox. [Color figure can be viewed at www.neuromodulationjournal.org]

MATT EFFECTS ON FUNCTIONAL CONNECTIVITY
between pain and anxiety networks to DMN after a single (initial)
MATT administration. Instead, we observed acute increases in
insula connectivity to pain and motor regions, including the mid-
cingulate and postcentral cortex. Although the insula is associated
with pain,91 it is also part of a broader network inclusive of mid-
cingulate92,93 and postcentral cortex94 involved in salience moni-
toring95 and embodied sensation.96,97 We surmise that the
observed pattern of acute connectivity increases could reflect the
engagement of salience or haptic/pain monitoring in relation to
MATT stimulation.
Finally, we observed the anticipated correlation of changes in

connectivity and symptoms following chronic MATT for pain seeds.
Increases in mid-cingulate connectivity with the lateral subnetwork
of the DMNwere correlated with reductions in depression and stress
scores on the DASS at study endpoint. This prediction, however, did
not hold for our anxiety seeds. This null finding may reflect our use
of a small, naturalistic, and heterogeneous sample and inclusion
criterion favoring the type of anxiety symptoms measured by the
Table 5. Seed-to-Voxel Functional Connectivity Clusters at T1-T3 Associated Wit

Scale Seed-to-cluster pair Peak

DASS total Cingulate cortex-L. ASG −66
DASS depression Cingulate cortex-L. ASG −66

ASG, anterior supramarginal gyrus; FDR, false-discovery rate; L, left; R, right; T1, ti
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GAD-7 (primarily cognitive symptoms) over other types of anxiety
symptoms (eg, somatic). Alternatively, the latency to symptom
response may differ across clinical symptoms, or MATT may modify
different networks across the course of treatment. To wit, we
observed changes in pain network connectivity to salience and
interoception regions acutely, whereas post-treatment pain con-
nectivity effects localized to DMN. Similarly, associations between
changes in MAIA scores and RSFC were also non-significant. While
this may indicate that MATT’s effect on interoception is limited,
changes in interoceptive awareness may develop over a longer
time window than the four weeks between pre- and post-MATT
intervention (ie, four weeks). Interoceptive awareness, as
measured by the MAIA, has typically been shown to significantly
increase with interventions that span a longer period of time (eg,
three months98).
While exploratory, we note that our preliminary structural results

also highlight the centrality of pain and salience circuits to MATT
response. Our early evidence indicates that cortical thickness in
h % Change in Symptom Improvement Upon the End of MATT Treatment.

MNI coordinate Cluster size Cluster p-FDR

−34 +24 186 <0.001
−34 +24 168 <0.01

mepoint 1; T3, timepoint 3.
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these circuits may influence how the brain functionally responds to
treatment with MATT. Although this analysis was conducted in a
limited subsample of participants and must be regarded as pre-
liminary, greater exploration of structure-function relationships
may reveal new in-roads into personalized medicine approaches to
treating anxiety. The utility of morphometry should be explored in
future larger scale randomized control trials.
Limitations
Several limitations of the current study must be noted. First, this

preliminary study used an open-label design without a sham
control condition. It remains to be seen if results will replicate in a
blinded, randomized controlled trial. We also note that our sample
size was small and heterogeneous in terms of anxiety disorders,
and despite cross-validations, these imaging results should be
regarded as preliminary until replicated in a larger sample. Our
small sample size also limits our power to detect small-to-medium
effect sizes, and we acknowledge the potential for Type II error.99 In
addition, our primary measure of anxiety, the GAD 7-item scale, had
fewer questions and thus less variability than our measures of
depression and stress, potentially leading to more non-significant
findings in relation to anxiety symptoms. Finally, though we
speculate that our findings are suggestive of an underlying tem-
poral heterogeneity in the response of brain networks to MATT, we
acknowledge that the evaluation of functional connectivity at rest,
rather than on task, may introduce network bias.

CONCLUSIONS

In summary, MATT is a novel, noninvasive, self-administered
home-use treatment designed to alleviate symptoms of anxiety
disorders. MATT peripheral nerve stimulation appears to be asso-
ciated with alterations of RSFC in the DMN after both acute and
long-term administration. We found MATT-associated increases in
connectivity between pain and anxiety ROIs and the posterior DMN
correlated with decreases in stress and depression symptoms over
a four-week course of treatment. These results provide a founda-
tion for understanding potential MATT mechanisms of therapeutic
action and reflect an important first step in developing noninvasive
alternative neuromodulation therapies that alleviate symptoms
through alteration of brain connectivity. Although our results are
promising, replication in a double-blinded randomized sham-
controlled trial is needed to evaluate potential test-retest or pla-
cebo effects.
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