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A major challenge children face is uncovering the causal structure of the world around
them. Previous research on children’s causal inference has demonstrated their ability to
learn about causal relationships in the physical environment using probabilistic
evidence. However, children must also learn about causal relationships in the social
environment, including discovering the causes of other people’s behavior, and
understanding the causal relationships between others’ goal-directed actions and the
outcomes of those actions. In this chapter, we argue that social reasoning and causal
reasoning are deeply linked, both in the real world and in children’s minds. Children use
both types of information together and in fact reason about both physical and social
causation in fundamentally similar ways. We suggest that children jointly construct and
update causal theories about their social and physical environment and that this
process is best captured by probabilistic models of cognition. We first present studies
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showing that adults are able to jointly infer causal structure and human action structure
from videos of unsegmented human motion. Next, we describe how children use social
information to make inferences about physical causes. We show that the pedagogical
nature of a demonstrator influences children’s choices of which actions to imitate from
within a causal sequence and that this social information interacts with statistical causal
evidence. We then discuss how children combine evidence from an informant’s
testimony and expressed confidence with evidence from their own causal observations
to infer the efficacy of different potential causes. We also discuss how children use
these same causal observations to make inferences about the knowledge state of the
social informant. Finally, we suggest that psychological causation and attribution are
part of the same causal system as physical causation. We present evidence that just as
children use covariation between physical causes and their effects to learn physical
causal relationships, they also use covaration between people’s actions and the envi-
ronment to make inferences about the causes of human behavior.
1. INTRODUCTION

In the past 10 years, the probabilistic models approach to cognitive
development, also known as rational constructivism, has begun to be applied
to many aspects of children’s development, particularly their causal inference
and learning. In the first wave of this research, however, the focus was
squarely on physical knowledge, such as the relation between blickets and
blicket detectors (or the workings of other physical machines). In these types
of studies, for example, an experimenter may place a series of blocks on top
of a machine. Some blocks are “blickets” and make the machine produce an
effect (e.g., lighting up and playing music), while other blocks do not.
Children are then asked to make causal inferences from the evidence they
see, such as which block was a blicket or which new block should make the
machine go. In this vein, work from our lab and others has demonstrated
that children possess sophisticated causal reasoning abilities, including
making rational inferences from probabilistic input (e.g., Gopnik et al.,
2004; Kushnir & Gopnik, 2005, 2007; Schulz, Bonawitz, & Griffiths, 2007;
Schulz, Gopnik, & Glymour, 2007; Sobel & Kirkham, 2006; Sobel,
Tenenbaum, & Gopnik, 2004).

These initial studies were generally limited to investigating how children
learn by observing causal relationships in their physical environment and did
not take the child’s social environment into account. From an early age,
children are exquisitely sensitive social beings and their causal learning takes
place in a rich social context. A natural question is therefore how social
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interaction informs and influences children’s causal learning and how causal
reasoning influences children’s social inferences.

Data about “purely physical” causes does not exist in a vacuum – blickets
are not putting themselves on the machine, after all. There is a social and
psychological component to the causal learning that results from our inter-
actions with other people. Even in the relatively simple context of a blicket
detector experiment, the child not only must consider the physical evidence
of the machine’s activation but also must make inferences about the exper-
imenter’s actions and mental states. Did she put the blicket on the machine in
the right way? She says she knows what makes the machine go, but does she?
Is she just trying to make the machine go or does she also want to teach me
how it works? Children can use the physical blicket evidence to make social
inferences (the block did not work, so she must not know what she is doing)
or use the experimenter’s testimony and actions to make inferences about the
blickets (since she says she knows what she is doing, she must be teaching me
about which blickets I should use, so I will pick the same one).

In general, social and physical causation will be inextricably linked in
most real-life causal learning, especially since the goal-directed actions of
others lead to many of the causal outcomes children observe. In fact, even
infants and toddlers seem to expect that the causally relevant events they
observe in the world will have been produced by the actions of social agents
(Bonawitz et al., 2010; Meltzoff, Waismeyer, & Gopnik, in press; Saxe,
Tenenbaum, & Carey, 2005; Saxe, Tzelnic, & Carey, 2007).

We argue that children jointly construct theories about both the physical
and the social world, which in turn generate higher-order theories that shape
children’s interpretation of future events. This natural learning process
parallels the scientific method, and thus, we can characterize children’s
learning with the metaphor of children as intuitive scientists.

This metaphor might suggest that children just learn on their own, but
neither children nor scientists are solitary learners. Both scientists and chil-
dren learn extensively from the actions, reports, and tuition of others.

Teachers serve a particularly important function in this regard, both
formally in the classroom and informally in the world. Recent work on
“natural pedagogy” (Csibra & Gergely, 2006, 2009; Gergely, Egyed, &
Kir�aly, 2007) and children’s understanding of testimony (e.g., Corriveau,
Meints, & Harris, 2009; Jaswal, Croft, Setia, & Cole, 2010; Koenig & Harris,
2005; Pasquini, Corriveau, Koenig, & Harris, 2007) has demonstrated that
infants and young children are sensitively tuned to others and can learn from
them in complex and subtle ways. The pedagogical intent of a social
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demonstrator can influence everything from children’s exploration of
a novel toy (Bonawitz et al., 2011) to their generalizations about objects’
functional properties (Butler & Markman, in press). The expertise (e.g.,
Koenig & Jaswal, 2011; Kushnir, Vredenburgh, & Schneider, under review;
Sobel & Corriveau, 2010) and past accuracy (e.g., Birch, Vauthier, &
Bloom, 2008; Corriveau et al., 2009) of a social informant affects what
children learn from this informant in the future.

At the same time that children learn from others, they also learn about
others. In the past 10 years, “theory of mind” research has found not only
more and more sophisticated psychological understanding at younger ages
but also a strikingly consistent rational pattern of advances in that under-
standing as children get older (Wellman & Liu, 2004). More recently, there
has been a renewed interest in children’s social cognition and their under-
standing of social concepts such as in-groups and out-groups (Dunham,
Baron, & Banaji, 2008; Kinzler, Dupoux, & Spelke, 2007; Rhodes &
Gelman, 2008) and personality traits (Liu, Gelman, & Wellman, 2007). We
suggest that the outcomes of other people’s actions are not only informative
about the causal systems they act on but also socially informative about the
actors themselves. Furthermore, we argue that children’s inferences about
psychological causes of behavior such as traits are fundamentally causal
inferences, relying on the same probabilistic learning mechanisms as their
inferences about physical systems such as blicket detectors.

Other recent results further support the notion that we can apply
probabilistic models to both the social context of causal understanding and
the causal context of the social world. Schulz and Gopnik (2004) found that
children inferred psychological causal relationships from covariation in
much the same way that they inferred physical and biological relationships.
Kushnir, Xu, and Wellman (2010) and Ma and Xu (2011) found that infants
as young as 14 months old showed some capacity to infer an underlying
desire from a person’s pattern of nonrandom sampling behavior. Addi-
tionally, Kushnir, Wellman, and Gelman (2008) and Sobel, Sommerville,
Travers, Blumenthal, and Stoddard (2009) found that children’s causal
inferences are sensitive to the social environment. On the computational
side, Shafto and colleagues (Bonawitz et al., 2011; Shafto & Goodman,
2008; Shafto, Goodman, Gerstle, & Ladusaw, 2010) have modeled how
pedagogical information may be used differently than nonpedagogical
information in solving inductive problems.

How children learn from social sources of causal information becomes an
especially interesting question when we move beyond artificial laboratory
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tasks such as blicket detectors. Much of the real-world causal evidence
children receive involves complex statistical patterns of both actions and
outcomes. Consider the case of learning which actions are necessary to open
a door. Children might notice that people almost always grasp and then turn
a doorknob before the door opens, but sometimes they pull a handle instead.
They frequently insert a key into a lock and then turn it before trying the
doorknob, but not always. Sometimes the sequence of actions must be
repeated a couple of times (for instance, in the case of a jammed lock); other
times, the sequence fails and is not followed by the door opening at all.
Often, other actions precede the door opening as well – putting down
groceries, fumbling around in a purse, ringing a doorbell, sliding a bolt –
which of these are causally necessary and which are incidental? Does the
order they were performed in matter? Finally, in addition to these obser-
vations, children might receive direct testimony about the door. For
instance, someone who lived in the house might say that jiggling the key
almost always works or someone unfamiliar with the door might guess that
this is the case. How might children combine these statements with other
sources of causal evidence?

In just this simple example of opening a door, we can see that there are
not only many potential types of causal information available but also many
different sources of statistical variation and ambiguity. There is variation in
the physical data – actions (and other causes) may not always bring about
their effects or may only lead to the desired outcome in certain combina-
tions. There is variation in the action sequence – repeated demonstrations of
bringing about the same outcome may include different actions. There is
variation in people’s behavior – some individuals might succeed at opening
the door while others fail or might be successful with one door while failing
to open another. There is even variation in direct testimony – people may
express differing levels of certainty and causal knowledge, and the testimony
of multiple people may even conflict. Finally, children must also take into
account their own prior knowledge and expectations about not only the
causal system in question but also the intentions, knowledgeability, and
helpfulness of their social informant, all of which could vary widely across
situations.

On the other hand, while all this ambiguity can make the causal infer-
ence problem children face more challenging, there are times when the
presence of statistical variation can actually be quite illuminating and aid
inference. Actions that do not consistently precede outcomes are less likely
to be causally necessary. Actions that reliably appear together and, in fact,
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predict each other, are more likely to be coherent units, corresponding to
intentional, goal-directed action. Variations in the certainty and accuracy of
a social informant can facilitate our judgments of the trustworthiness of the
information they provide. Variation in the success and failure of individuals
might help us infer situational or psychological causes for their behavior such
as personality traits.

Formal modeling can be extremely helpful in disentangling these
complex inferences. First, formal models give us a way of precisely char-
acterizing hypotheses about what the child thinks and knows. Rational
constructivism, and probabilistic computational models in particular, is
a natural way to approach understanding how social information, along with
other evidence, contributes to children’s causal reasoning, because they
allow us to systematically represent both beliefs and evidence. Intuitively,
this can be seen as a formal version of the approach developmental
psychologists have used historically. The method is to hypothesize that
children have particular beliefs or conceptions of the world and to assume
that children’s answers and actions follow rationally from those beliefs. For
example, if children initially have a non-representational theory of mind, we
would expect them to rationally infer in a false-belief task that a person will
immediately search for an object in the location where it actually resides
rather than where she last saw it. The classic developmental methodology,
then, is to work backward and infer children’s current theories from their
answers and actions, by assuming that they are operating under the theory
that is most consistent with their behavior.

Describing the child’s current conception of the world as a particular
rational model gives us a more exact way of both characterizing the child’s
beliefs and working out the predictions that should rationally follow from
those beliefs. It also lets us make predictions about how children should
rationally update those beliefs with new evidence. By specifying a model, we
make explicit our hypotheses about the prior biases and information children
bring to a problem and how these biases should be combined with new
information in order to update beliefs or even potentially change models or
theories. Conversely, we can compare different possible models of the
children’s beliefs and see which models are most congruent with children’s
behavior. This approach allows us to give a more precise justification for
attributing particular theories to the children, theories that may or may not
be like adult theories.

Second, probabilistic models give us a way of more precisely combining
and weighting how different factors interact in the child’s mind to bring
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about a particular response. It is common in developmental psychology to
see children make different judgments in different contexts. This inconsis-
tency has sometimes been taken to mean that all children’s cognition is
variable and context dependent and that there is no coherent conceptual
structure to be found (e.g., Greeno, 1998; Lave & Wenger, 1991; Thelen &
Smith, 1994). At other times, it has led to unresolved debates, for example,
about whether early imitation is rational or not. As we will see, probabilistic
models allow one to precisely show how multiple sources of evidence,
reflecting different contexts, can be rationally combined and integrated to
lead to a particular response.

In this chapter, we report two lines of research that apply the ideas of
probabilistic modeling to social cognition and explore the complex and
interdependent relationship between social and causal learning. In the first
set of studies, we examine how the social context, in the form of both
demonstrations and testimony, influences children’s causal learning. We also
examine how causal learning can influence the understanding and
segmentation of action and how observed statistical structure in human
action can affect causal inferences. In the second set of studies, we examine
how children might use covariation in human behavior to infer and attribute
mental traits to others, in the same way that they use covariation in cause and
effect data to infer physical causal structure. Both lines of research extend
probabilistic models from reasoning about purely physical causes to include
children’s social cognitive development, while also characterizing the
distinctive aspects of psychological and physical causal reasoning.

2. THE SOCIAL CONTEXT OF CAUSAL REASONING

2.1. Jointly Inferring Causal Structure and Action
Structure

As we discussed in the introduction, many if not most of the causal outcomes
children witness are the result of intentional human action. Children must
be able to distinguish the unique actions they see other people performing
and recognize their effects in order to understand the reasons behind others’
behavior and in order to potentially bring about those effects themselves.
But before we can interpret actions, we first must parse a continuous stream
of motion into meaningful behavior (Byrne, 2003). What cues do we use to
do this? How might infants and young children begin to break into the
behavior stream in order to identify intentional, goal-directed actions?
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Could the causal relationships between actions and their outcomes in the
world help children understand action structure itself? How might children
identify reaching, grasping, and turning and then group them into the action
“opening the door”?

One way that infants might be able to segment actions is by using
statistical regularities in human motion. There is now a lot of evidence that
both infants and adults use statistical patterns in spoken language to help
solve the related problem of segmenting words from continuous speech
(e.g., Aslin, Saffran, & Newport, 1998; Pelucchi, Hay, & Saffran, 2009;
Saffran, Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996). In these
experiments, infants (and adults) listen to an artificial language constructed of
made-up words, usually created from English syllables (e.g., dutaba, patubi,
pidabu). The words are assembled into a continuous speech stream (e.g.,
dutabapatubipidabu.), with other potential segmentation cues such as
intonation and pauses removed. In these experiments, as in many words in
real languages, syllables within a word have higher transitional probabilities
than syllables between words – you are more likely to hear ta followed by ba
(as in dutaba) than to hear bi followed by pi (as in patubi pidabu). Both
infants and adults are able to use these transitional probabilities in order to
distinguish words in these artificial languages (dutaba, patubi, pidabu), from
part-words – combinations of syllables that cross a word boundary (e.g.,
tabapa, tubipi), and from nonwords, combinations of syllables that do not
appear in the artificial language at all (e.g., dupapi, babibu). Infants have also
been shown to succeed at statistical language segmentation even when more
naturalistic language stimuli are used (Pelucchi et al., 2009).

More recently, a similar sensitivity to statistical regularities has been
shown to play a role in action segmentation in both adults (Baldwin,
Andersson, Saffran, & Meyer, 2008) and infants (Roseberry, Richie, Hirsh-
Pasek, Golinkoff, & Shipley, 2011). Intriguingly, there is also evidence that
children can successfully map words learned through this type of segmen-
tation to meanings (Estes, Evans, Alibali, & Saffran, 2007) and, conversely,
can use words they already know to help find segment boundaries and
discover new words (Bortfeld, Morgan, Golinkoff, & Rathbun, 2005).
Similarly, a recent study shows that, in the visual domain, children use
statistical patterns to infer the boundaries between objects and then use that
information to make further predictions about how objects will behave
(Wu, Gopnik, Richardson, & Kirkham, 2011). So children do not just
detect the statistics and then segment the streams accordingly. They actually
treat those statistical units as if they were meaningful.
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In the sameway thatwords havemeanings, intentional actions usually lead
to causal outcomes. This suggests that just as identifying words assists in
mapping them to meanings, segmenting human action may bootstrap
learning about causation and vice versa. Recent work has demonstrated that
adults can segment videos of common everyday behaviors into coherent
actions (Baldwin et al., 2008; Hard, Tversky, & Lang, 2006;Meyer, Decamp,
Hard, Baldwin, & Roy, 2010; Newtson, Engquist, & Bois, 1977; Zacks &
Tversky, 2001;Zacks, Speer, Swallow,&Maley, 2010) and that both children
and adults can infer causal relationships from conditional probabilities
(Cheng, 1997; Gopnik et al., 2004; Griffiths, Sobel, Tenenbaum, & Gopnik,
in press; Griffiths & Tenenbaum, 2009). However, researchers have not yet
explored whether action parsing and causal structure can be learned jointly.

In our work (Buchsbaum, Griffiths, Gopnik, & Baldwin, 2009, 2012),
we adapted a Bayesian word segmentation model (Goldwater, Griffiths, &
Johnson, 2009), with actions composed of individual small motion elements
(SMEs) taking the place of words composed of phonemes or syllables, and
extended this model to incorporate causal information. The key intuition
behind this model is that action segmentation and causal structure are jointly
learned, taking advantage of statistical evidence in both domains. In the
model, sequences of motion that correspond to known actions are
considered more likely to be causes, and sequences of motion that appear to
be causal (they predict outcomes in the world) are considered more likely to
be actions. The inferred action boundaries help determine the inferred causal
structure and vice versa. This corresponds to our hypothesis that people
believe intentional actions and causal effects go hand in hand. If statistical
action structure is a cue to causal relationships then, like our model, people
should think statistically grouped actions are more likely to be potential
causes than other equivalent sequences. Additionally, if people believe that
causal sequences of motion are also likely to be actions, then adults should
find causal sequences to be more meaningful and coherent than other
sequences with equivalent statistical regularities. Finally, if action segmen-
tation and causal relationships are truly jointly learned, then we should see
cue combination and cue conflict effects emerge, as in other cases of joint
perceptual inference (Ernst & Banks, 2002).

We tested all these predictions in a set of experiments using “artificial
action grammars” as in Baldwin et al. (2008). Just as a sentence is composed
of words, which are in turn composed of phonemes or syllables, here an
action sequence is composed of actions, which are themselves composed of
SMEs. Similar to Baldwin et al., we used video clips of object-directed
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motions to create three-motion actions, which we then combined to create
continuous videos of a person manipulating an object.

Just as people can recognize words from an artificial language, and
distinguish them from nonwords and part-words, we also know that they
can recognize artificial actions grouped only by statistical relationships and
can distinguish these sequences from nonactions (motions that never
appeared together) and part-actions (motion sequences that cross an action
boundary) (Baldwin et al., 2008). We wanted to see whether people think
these statistically defined actions are meaningful sequences that can help
them understand and interpret others’ behavior and whether they believe
that these actions are likely to be causal.

In the first experiment, after watching a video, adult participants rated
actions, part-actions, and nonactions on how coherent the sequences
seemed to be. They were given the example of removing a pen cap and then
writing with the pen as motions “going together” and of removing a pen cap
and then tying your shoes as motions “not going together.” Participants also
rated sequences on how likely they thought those motions were to be causal.
In this case, we gave participants a cover story. They were told that some of
the sequences of motion they were observing would make the manipulated
object play music, but there was no sound in the video, so they would just
have to guess how likely each sequence was to cause music.

Adults rated the sequences corresponding to actions as both more
coherent andmore likely to be causal than the nonactions and part-actions. In
fact, after the experiment, some of the participants commented on howmuch
more “sense” some of the action sequences made, often coming up with post
hoc intentional explanations for the actor’s behaviors (“she shook it to see if
anything was inside, then emptied it, then looked inside to check”). This is
striking because the “nonactions” of one video were in fact the “actions” of
another, meaning that people found the very same sequences of motion to be
moremeaningful based purely on how frequently they appeared together and
how well the component motions predicted each other.

These results show that people’s sensitivity to statistical patterns in action
is not just an artifact of the impoverished stimuli but plays a real role in their
understanding of the structure of observed human behavior. The fact that
people found the statistically grouped actions to be more coherent suggests
that they do not experience the sequences they segment out as arbitrary but
assume that they are meaningful groupings that play some (possibly inten-
tional) role. This is further supported by the fact that, even without being
presented with overt causal structure, people believe that the statistically
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grouped actions are more likely to be causally effective, suggesting that
inference of action structure and causal structure really are linked.

People seem to use statistical action structure to infer causal relationships
but can they use causal relationships to identify meaningful actions? We
hypothesized that when statistical cues to action segmentation are unavail-
able, adults will be able to use causal structure to identify coherent units of
action. In a second experiment, we had adults watch specially constructed
videos where all possible combinations of three motions appeared equally
often together, so that joint and transitional probabilities could not be used
to identify groupings. However, one particular sequence of three motions
was chosen to be causal and was always followed by the manipulated object
playing music, and this time the sound in the video was on. Adults easily
identified the correct set of causal motions from within the longer sequence,
one of the first demonstrations of causal variable discovery from a contin-
uous stream of events. Additionally, even though there were no statistically
grouped actions in this experiment, participants perceived the causal
sequence as being more meaningful (going together better) than the other
sequences, suggesting that they had nonetheless segmented it out as
a coherent action based on its causal efficacy.

In a third experiment, we looked at the inferences people make when
both types of cues – statistical action structure and causal relationships – are
present. Can people combine information from both these sources of
evidence, even when they conflict? This type of cue integration is often used
as evidence of true joint inference, for instance, when visual and haptic
information about the same stimuli are combined in inferences about an
object’s size (Ernst & Banks, 2002). As in our first experiment, we showed
adults videos of statistically grouped actions, but now we selected a part-
action (a set of motions crossing an action boundary) as the causal sequence
that leads to music. Adults appeared to take both the causal relationships and
the statistical structure into account, correctly identifying the part-action as
the most likely cause, but continuing to rate actions as more likely to also be
causal when compared to other part-actions and nonactions. Similarly, they
judged the causal part-action to be very cohesive, even though it violated
the statistical regularities of the action sequence, suggesting that its causal
properties led to it being considered a coherent unit of human action.

Together, these three studies demonstrate that adults, at least, can
combine statistical regularities and causal structure to divide observed human
behavior into meaningful actions. They can also use this inferred segmen-
tation to help them identify likely causal actions. Additionally, the parallels
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between people’s word segmentation and action segmentation abilities
support the possibility of a more general statistical learning mechanism.
These results also provide a demonstration that causal and social information
can be jointly used to infer goal structures. In the following section, we will
look at whether young children make similar types of inferences. Can
children identify causal subsequences of action from within a longer action
sequence when deciding which actions to imitate?
2.2. Causal Imitation from Social Demonstrations
Imitation is a characteristic and pervasive behavior of human children and so
it seems like a natural mechanism for identifying and learning causal actions.
How do children choose what to imitate from all the actions they see
performed around them? When they see a sequence of behaviors preceding
an interesting outcome, can they choose the relevant actions? Do they
imitate different portions of sequences when given different evidence about
their effectiveness?

Recent studies of children’s imitation have produced varying answers to
the question of whether children are in fact capable of inferring causal action
sequences from observed demonstrations. Children can use information
about an actor’s prior intentions to help them identify causally effective
actions (Carpenter, Call, & Tomasello, 2002). Similarly, when children
observe unsuccessful demonstrations, they reproduce the actor’s intended
goals rather than the unsuccessful actions themselves (Hamlin, Hallinan, &
Woodward, 2008; Meltzoff, 1995). In some cases, they vary the precision
and faithfulness of their imitation with apparent causal relevance (Brugger,
Lariviere, Mumme, & Bushnell, 2007; Harnick, 1978; Williamson &
Markman, 2006) and selectively imitate actions based on how causally
effective they appear to be (Schulz, Hooppell, & Jenkins, 2008; Want &
Harris, 2001; Williamson, Meltzoff, & Markman, 2008). At other times,
however, children will “overimitate,” reproducing apparently unnecessary
parts of a causal sequence (Horner & Whiten, 2005; Lyons, Young, & Keil,
2007; Lyons, Damrosch, Lin, Macris, & Keil, 2011; McGuigan & Whiten,
2009; McGuigan, Whiten, Flynn, & Horner, 2007) or copying an actor’s
precise means (Meltzoff, 1988) even when this makes them less efficient at
accomplishing their goal.

There are even cases where children do both in the same study. In the
“rational imitation” studies by Gergely, Bekkering, and Kir�aly (2002),
children saw an experimenter whose hands were either free or confined
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activate a machine using their forehead. Children both produced exact
imitations of the actor (touching their head to the machine to make it go)
and produced more obviously causally efficient actions (touching the
machine with a hand), though the proportion of such actions differed in the
different intentional contexts. In fact, finding a distribution of imitative
responses is the norm across all these studies. Even in the most intriguing
demonstrations of overimitation, it is not the case that all children blindly
mimic the demonstrator’s actions, and similarly, even in experiments where
children show an overall appreciation for causal efficacy, some children still
imitate unnecessary or ineffective actions.

We are interested in reconciling these results by suggesting that perhaps
all these imitative choices are the result of rational imitation using
a combination of social, physical, and statistical evidence as well as prior
knowledge. In particular, evidence for which actions are causally necessary
includes more than just the immediately observed demonstration. It also
includes children’s previous experiences with causal systems and objects,
their prior observations of bringing about the same effect, and social
information including the adult’s knowledge state, intentions, and peda-
gogical stance (we know that observing a helpful teacher versus a neutral
[Bonawitz et al., 2011; Brugger et al., 2007], ineffective [Schulz et al., 2008;
Want & Harris, 2001; Williamson et al., 2008], or naïve [Bonawitz et al.,
2011; Butler & Markman, in press] demonstrator changes children’s infer-
ences). If different imitative choices are the result of different evidence, then
we should be able to manipulate these choices and get children to imitate
different portions of the same action sequences by changing the combination
of social and physical evidence they receive.

Moreover, in many real-world situations, the causal structure of
a demonstrated sequence of actions is not fully observable, and which actions
are necessary and which are superfluous may be unclear. Therefore, there is
often no single “right answer” to the question of what to imitate. After all,
a longer “overimitation” sequence might actually be necessary to bring
about an effect, though that might initially seem unlikely. One way in which
children may overcome this difficulty is by using statistical evidence
provided by repeated observations of bringing about the effect. By watching
someone unlock and open a door or turn on a light bulb on multiple
occasions, children can detect which actions consistently predict the desired
outcome and which do not.

To test this prediction, we ran an experiment that manipulated the
statistical evidence children received from a series of demonstrated action
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sequences (Buchsbaum, Griffiths, Gopnik, & Shafto, 2011). We used
a Bayesian model to help us construct demonstration sequences that
normatively predict selective imitation in some cases and “overimitation” in
others. If children make rational inferences from variations in the action
sequences they observe, then their choice of whether to imitate only part of
an action sequence versus the complete sequence should similarly vary with
the evidence.

In this study, children watched a naïve informant (who claimed to have
no knowledge of how the toy worked) demonstrate five sequences of three
actions each on a toy (e.g., the experimenter squishing the toy, then shaking
it, and then rolling it would be one sequence). Some of these sequences but
not others led to the toy playing music. In the “ABC” data condition, the
same three actions (e.g., knock, shake, pull) always made the toy play music,
while in the “BC” data condition, the first action of the successful sequences
varied while the final two actions preceding the music stayed the same (e.g.,
knock, shake, pull, or squish, shake, pull, or roll, shake, pull would all be
followed by the toy playing music). Children either could exactly reproduce
one of the three-action sequences that had caused the toy to activate or
could just produce the final two actions in isolation.

Intuitively, it is more likely that all three-actions are necessary in the
“ABC” condition, while perhaps only the final two-actions are necessary in
the “BC” condition. However, both three-action and two-action sequences
reflect potentially correct hypotheses about what caused the toy to activate
in either condition. It could be that the last two-actions by themselves cause
the toy to activate in the “ABC” condition and the first is superfluous or it
could be that three-actions are necessary in the “BC” condition, but the first
action can vary. It is just the probability of these hypotheses that changes
between the two conditions. Our Bayesian model predicts just those
differences in probability.

If children automatically encode the adult’s successful actions as causally
necessary, then they should exclusively imitate three actions in both
conditions. However, if children are also using more complex statistical
information, then we expect that children in the “ABC” condition should
reproduce three actions more often than children in the “BC” condition and
that children in the “BC” condition might imitate the two-action subse-
quence by itself. This is, in fact, what we found – children imitated all three
actions almost exclusively in the “ABC” condition, while children in the
“BC” condition imitated much more variably, with a number of them
imitating the two-action subsequence, even though they had never seen it
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performed on its own and even though three actions would have also
activated the toy. Like adults in our first set of experiments, preschool
children used statistical patterns to identify causal subsequences within
longer sequences of action.

The particular model parameters that best fit children’s performance
also tell us something about children’s expectations going into this task.
The model suggested that children employ a causal Occam’s razor,
assuming that simpler hypotheses, which require fewer unique causal
sequences to explain the data, are more likely than more complex
hypotheses. The model also suggested that children were biased to imitate
the adult’s complete action sequence (though this bias could be over-
come), perhaps indicating a preexisting belief that adults usually do not
perform extraneous actions.

Children might make this “rational actor” assumption because they are
using information about the adult’s knowledgeability (e.g., Jaswal, 2006;
Kushnir et al., 2008), reliability (e.g., Koenig, Clément, & Harris, 2004;
Zmyj, Buttelmann, Carpenter, & Daum, 2010), and intentional stance
(Bonawitz et al., 2011; Butler & Markman, in press). For instance, children
might notice that the experimenter always performs three actions and infer
that the experimenter, while not knowing the exact causal sequence, knows
that it must be three actions long. We explored this possibility in a next
experiment, where we manipulated the intentional state of the demonstrator
rather than the statistics of the demonstration.

In our original study, the experimenter acted clueless, as if she did not
know anything about how the machine worked. In the next study, the
experimenter became a knowledgeable teacher. She told the children that
she was showing them how the machine worked – and then showed
them exactly the same sequences of actions as in the original “BC”
condition. Now, children were much more likely to “overimitate;” almost
all of them reproduced a complete sequence of three actions. So children
made different causal inferences depending on the social context. When it
was their turn to bring about the effect, children chose to reproduce more
of the demonstrated actions when the demonstrator was a knowledgeable
teacher than when she was naïve about the workings of the toy. Intui-
tively, children, like our model, understood that a helpful teacher would
only be demonstrating all these extra actions if they were in fact necessary
to make the toy work (see, e.g., Shafto & Goodman, 2008, for more
details on Bayesian models of inference from pedagogically versus non-
pedagogically selected data).
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These studies suggest that causal learning is informed by both social
knowledge and statistical information. Children are sensitive to probabili-
ties, knowledge state, and pedagogical intent when deciding which actions
to imitate. These studies also suggest a rational account of “overimitation.”
In particular, imitating three actions in these studies can be thought of as
a kind of overimitation, reproducing parts of a causal sequence that are not
actually demonstrably necessary for the effect. These results suggest that this
behavior varies depending on the statistics of the data and the probability of
various hypotheses concerning them. “Overimitation” also varies
depending on the social demonstrator. By explicitly representing the
contributions of these different sources of evidence and using them to
assign probabilities to causal hypotheses, a Bayesian model can predict these
behaviors quite precisely.

Many of the studies of imitation we discussed earlier in this section did
not provide the child with either clearly pedagogical or nonpedagogical
demonstrators. These demonstrators may have used cues such as directed
gaze and pointing (Csibra & Gergely, 2009; Gergely et al., 2007; Senju,
Csibra, & Johnson, 2008), leading children to assume that they were in
a teaching situation. In general, these studies also showed children only one
way to bring about the desired effect and used causal systems where chil-
dren’s prior expectations were unclear. These differences may help explain
why children’s imitative choices seem so varied across studies. This work also
suggests that despite appearances, such behavior is a rational response to
different combinations of social, statistical, and physical information. In
situations where causal structure is ambiguous, children not only take
advantage of social demonstrations, they use relevant information about the
demonstrators themselves to make causal inferences.
2.3. Causal Inference from Social Testimony
The previous experiments show that social observation influences children’s
causal reasoning. Children used the demonstrator’s intentional state to help
infer which actions were causally necessary to produce an effect. Presumably,
children in these experiments were learning not only about the causal system
but also about the causal demonstrator. What assumptions might children
have made about the value of the demonstrator as a social informant and how
might these assumptions guide children’s future interactions with that person?
In this section, we address these questions by investigating the influence of
a different type of social information: verbal testimony. What can we learn
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from other people’s causal statements about the world and what might the
world tell us about the reliability of those statements and thus, other people?

Much of what we know about theworld we learn fromwhat other people
tell us to be true. Our parents, teachers, and peers are continually providing us
with information about the causal structure and mechanisms of our environ-
ment (e.g., Callanan&Oakes, 1992).However, the role of verbal testimony in
causal learning is not obvious a priori. Cause and effect relationships can often
be inferred from direct observation without explicit instruction. Again, a child
could learn that turning a key in the lockmakes a door open because someone
said this is so, but a child could just as successfully learn this causal link simply by
observing someone turning a key and seeing the door open. So how might
children use informant testimony in the context of causal inference?

When what we hear corroborates what we observe, then testimony
should facilitate children’s causal understanding. However, as we discussed
in the introduction, the real world is stochastic and unpredictable, and
informants might be ignorant, mistaken, or even deceptive. What would
happen if the testimony children receive conflicts with what they see?
Would children choose one source to rely on or integrate information from
each to inform their causal judgments? To use testimony effectively, we
must know when it is prudent to trust others and when they are likely giving
inaccurate information. What would a conflict between testimony and
observation tell children about the credibility of their informant?

Young children have a strong bias to trust the testimony of others
(Jaswal et al., 2010). However, children are not entirely credulous. Just as
they can use patterns of evidence to make sophisticated judgments about
the relative strengths of different causes (e.g., Kushnir & Gopnik, 2005),
children can use patterns of past accuracy to make sophisticated judgments
about the relative credibility of different informants. Preschoolers are more
likely to trust future testimony from informants who have demonstrated
that they tend to be knowledgeable and accurate over that of informants
who have demonstrated ignorance and inaccuracy (e.g., Corriveau et al.,
2009; Koenig & Harris, 2005; Pasquini et al., 2007). This phenomenon is
referred to as selective trust (Koenig & Harris, 2005). Past accuracy is not
the only cue children rely on, however. As we saw in our studies of
children’s imitation, children also take the expressed confidence of the
informant into account and are more likely to trust the testimony of
informants who speak with confidence than informants who indicate that
they are unsure (e.g., Jaswal & Malone, 2007; Tenney, Small, Kondrad,
Jaswal, & Spellman, 2011).
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Informants are not only reporters about the world but also reporters of
their own knowledge states. Informants may be unreliable because they hold
mistaken beliefs about the world or because they hold mistaken beliefs about
the extent of their own knowledge. Thus, yet another cue children might
use to evaluate testimony is an informant’s level of self-knowledge: how
well their confidence predicts their accuracy (what Tenney et al., 2011, refer
to as calibration). Research on eyewitness testimony has suggested that
though children are sensitive to an informant’s confidence and past accuracy,
they are not sensitive to an informant’s level of self-knowledge, whereas
adults are attuned to all three cues (Tenney et al., 2011).

Some recent research has explored how children combine social infor-
mation with their observations when making causal inferences. This
research, including the studies on imitation in our lab, has found that just as
children consider testimony from certain informants more informative than
others based on past reliability, children find the interventions of certain
causal demonstrators more informative than others based on the social
information the demonstrators offer. For example, children favor the causal
interventions of a demonstrator who claims to be knowledgeable about the
causal system over those of a demonstrator who claims to be naïve (Kushnir
et al., 2008). Children also learn more from a disambiguating intervention
when the demonstrator supplies an explanation relevant to the causal
problem at hand than when the demonstrator supplies an irrelevant rationale
(Sobel & Sommerville, 2009). Additionally, children are better able to infer
causal strength from probabilistic data when the demonstrator acts surprised
by the anomalous outcomes (Sobel et al., 2009). Together this research
shows that children’s causal inferences are not solely determined by the
statistical evidence children observe but are also mediated by the social
information communicated by the demonstrator.

What happens, though, when the social information explicitly contrasts
with children’s observations? Howmight children handle a conflict between
what observed statistical data show and what an informant says? Further-
more, what inferences do children make about the reliability of an informant
based on the information they provide and the causal evidence children see?
In the following experiment (Bridgers, Buchsbaum, Seiver, Gopnik, &
Griffiths, 2011, 2012), we explored children’s causal and social inferences
when they were presented with a disagreement between an informant’s
statements and their own causal observations.

The experiment involved four between-subject conditions: the
knowledgeable conflict condition, the naïve conflict condition, the
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knowledgeable baseline condition, and the naïve baseline condition. In the
conflict conditions, we investigated how 3-, 4-, and 5-year-olds resolve
a conflict between the information provided by either a knowledgeable or
a naïve informant and by probabilistic causal demonstrations. In the baseline
conditions, we explored preschoolers’ baseline trust in a knowledgeable and
a naïve informant’s testimony in the absence of conflicting data. We describe
the conflict conditions first.

The knowledgeable and naïve conflict conditions had two within-
subject phases: the causal phase and the generalization phase. First, in the
causal phase, children were introduced to two blocks (the “causal” pair) and
a machine that lit up and played music when certain blocks were placed on
top. An informant explained to the children that one block was better at
activating the machine than the other. In the knowledgeable conflict
condition, the informant claimed to really know which block was better,
while in the naïve conflict condition, the informant said she was just
guessing. The informant then left the room, and a second, neutral experi-
menter demonstrated the blocks on the machine, providing probabilistic
evidence that in both conditions, challenged the informant’s statement: The
block endorsed by the informant was actually less causally efficacious,
statistically speaking, than the unendorsed block. The endorsed block only
activated the machine two out of six times, while the unendorsed block
activated it two out of three times (past research has shown that children can
correctly infer causal strength from this pattern of activation; see Kushnir &
Gopnik, 2007). Children were then asked to choose which block they
thought was better at activating the machine. Children were thus con-
fronted with an ambiguous situation in which they had to decide whether or
not the informant or perhaps their own observations were unreliable. In the
generalization phase, the informant returned with two novel blocks (the
“generalization” pair) and, in both conditions, claimed that she knew which
block was better at activating the machine. Last, children were asked by the
neutral experimenter to choose one of these new blocks to make the
machine go.

One might expect that when provided with contradictory verbal and
visual information, children would always trust what they directly see over
what they hear. However, children might instead rationally combine their
prior beliefs about the reliability of these types of sources with the evidence
to make a joint causal and social inference. In doing so, children would also
update their beliefs about the validity of both the informant’s testimony and
the observed causal data, which would affect their later inferences from these
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sources. Therefore, as in our previous experiments looking at children’s
causal imitation, we expected children’s inferences to vary with both the
social and the causal evidence.

Our results suggest just such an interaction. In the causal phase of the
naïve conflict condition, children overwhelmingly trusted the data and
chose the unendorsed block as better at activating the machine, while
children in the knowledgeable conflict condition were torn between the
two blocks. Thus, when there was strong evidence supporting the causal
efficacy of each block (the knowledgeable informant’s testimony for the
endorsed block and the causal observations for the unendorsed block),
children were at chance between inferring the endorsed or the unendorsed
block as the better cause. When the testimony was weaker (because the
informant was naïve), children favored the block that the causal data sug-
gested was better. Though the causal evidence was constant across condi-
tions, children put more confidence in the knowledgeable informant’s claim
than in the naïve informant’s guess and so were willing to believe the
informant over their own observations when she expressed certainty but not
when she expressed uncertainty. As predicted and again, as demonstrated in
our imitation experiments, children’s causal inferences about the same
pattern of causal data differed depending on the social context. These results
suggest that children combine informant testimony and causal data to infer
causal relations even when these cues conflict.

In the conflict conditions, the informants expressed different levels of
knowledge about the causal blocks initially but both were wrong in their
endorsements. Thus, in addition to different levels of claimed knowledge-
ability, the informants also had different levels of self-knowledge. Even
though both informants made incorrect predictions about the causal blocks’
relative causal strengths, the naïve informant actually demonstrated more
self-knowledge because she was aware that she did not know about the
blocks. The knowledgeable informant, on the other hand, was oblivious to
the fact that she was mistaken in her beliefs. Therefore, when both infor-
mants later say that they “know” about the generalization blocks, it is more
judicious to trust the previously naïve informant because she is more likely
to actually know about the causal system when she says that she does. Would
children be sensitive to this difference?

At first glance, the answer appears to be no. In the generalization phase,
there was no difference in performance across the two conditions; children
were equally likely to extend trust to the informant who was correctly
uncertain in her prior testimony as to the informant who was incorrectly
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certain. In both the knowledge and the naïve conflict conditions, children
were willing to trust the informant and intervened with the generalization
block she endorsed more often than the unendorsed block. Children’s
failure to selectively trust the naïve informant in the generalization phase
implies that, as earlier research has suggested, children are more sensitive to
an informant’s expressed knowledge level about the general world than to
her level of self-knowledge (e.g., Tenney et al., 2011).

However, there may be alternative explanations for children’s perfor-
mance in the generalization phase that do not assume that children entirely
lack a concept of self-knowledge. In the causal phase, the informant
endorses one block, while the causal data “endorse” the other. However, in
the generalization phase, though the informant endorses one of the new
blocks, there is no evidence about the second block. Since there is no
evidence directly contradicting the informant’s claim, there is a relatively
low cost in choosing to intervene with the endorsed generalization block
over the unendorsed one. Furthermore, the conflicting data observed in the
causal phase are probabilistic, suggesting that perhaps the causal data, rather
than the informant, are the unreliable information source. Maybe the
informant was correct about the relative efficacies of the causal blocks and
the particular pattern of causal data the children observed were merely
a fluke (for instance, the result of faulty wiring or battery failure) and
unrepresentative of the actual causal system. Additionally, children’s strong
tendency to trust testimony may have further convinced them to trust the
informant about the generalization blocks regardless of the conflict observed
and the informant’s prior knowledge state. In summary, given children’s bias
to believe testimony, their beliefs about the reliability of stochastic data, and
the low cost of intervening with the endorsed generalization block, children
could be sensitive to self-knowledge and still rationally trust both informants
more or less equally.

To help us better understand children’s performance in the generaliza-
tion phase of the conflict conditions, we need to consider the level of trust
that children place in a knowledgeable and a naïve informant’s causal
testimony when no conflicting causal data are present. In the knowledgeable
and naïve baseline conditions, children were told by either a knowledgeable
or a naïve informant, respectively, that one block was better than another at
making a machine go, without seeing any causal demonstrations of either
one. These two conditions are identical in structure to the generalization
phase of the two conflict conditions, but since there is no preceding causal
phase, children only have the informant’s current testimony to guide their
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intervention choice. We predicted that in general across both baseline
conditions, children would trust the informant but would be more likely to
do so when the informant expressed certainty than when she expressed
uncertainty. And that is basically what we found: A majority of children
chose to intervene with the endorsed block across both conditions though
slightly fewer did so when the informant was naïve.

We can compare children’s performance at baseline to their performance in
the generalization phase of the conflict conditions. In both situations, children
are presented with informant testimony endorsing one of two blocks but are
not given a chance to observe the blocks on the machine. However, in the
baseline conditions, children have no prior experience with the informants,
while in the generalization phase of the conflict conditions, children have
witnessed a disagreement between the informants’ earlier statements and the
causal data. If children’s trust in the informants is influenced by this conflict, we
would expect children to be less trusting of the informants in the generalization
phase of the conflict conditions than in the baseline conditions.Whenwemake
this comparison, we find that overall, more children intervened with the
endorsed block in the baseline conditions than in the generalization phase of
the conflict conditions, suggesting that children were in fact more willing to
trust the informants before observing a conflict between their testimony and
the causal data than afterward. Moreover, there was a greater decline in chil-
dren’s trust in the knowledgeable informant than in the naïve one. This may
indeed suggest that children are potentially sensitive to self-knowledge though
further research is necessary to test this claim.

This experiment confirms that children’s causal judgments are informed
by both social knowledge (in this case, testimony) and statistical data.
Additionally, these experiments provide us with further insight into how
children combine information from these sources. They demonstrate that
children do not entirely discount one source and privilege another when the
information from each conflicts. Rather children are evaluating, weighting,
and integrating information from both social and physical cues to guide their
inferences about both the causal system and the informant.

This situation lends itself particularly well to Bayesian modeling since
children are being asked to combine information from two probabilistic
sources and the disagreement between the two only adds to the complexity
and ambiguity of the information each source provides. We are developing
just such a model (Buchsbaum et al., in press) to better understand how
children might be relating testimony and direct observation in their social
and causal inferences (for a related model, see Eaves & Shafto, this volume).
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3. USING CAUSAL INFERENCE TO LEARN
ABOUT PEOPLE
The studies described in the preceding sections demonstrate how the social
domain can inform our inferences about physical causation and how the
causal outcomes of people’s actions can be used to make inferences about
both the causal structure of the physical world and the intentions, knowl-
edge, and reliability of the social demonstrator or informant. But as adults,
we not only make causal inferences about physical systems, we also make
extensive inferences about the causes of people’s behavior, a process termed
“attribution.” How do children reason about these psychological causes?
Does their reasoning about the causes of human behavior proceed along the
same lines as their reasoning about physical causation?

Even in the earliest years of life, babies are already making attributions
about other people and figuring out the causes of their behavior. For
example, even infants expect there to be different sources of movement for
physical objects and people (Saxe et al., 2005; Schult & Wellman, 1997;
Woodward, Phillips, & Spelke, 1993). In other studies, infants are capable of
even more sophisticated reasoning about others’ behavior; for example, they
expect that agents who help others reach their goal will be treated differently
than agents who hinder others’ progress and they also treat helpers and
hinderers differently themselves (Hamlin, Wynn, & Bloom, 2007;
Kuhlmeier, Wynn, & Bloom, 2003).

As children grow older, they show increasingly sophisticated under-
standing of such social constructs as in-groups and out-groups. Some more
sophisticated aspects of social cognition, however, do not seem to emerge
until much later in children’s development, in some cases not until the
school-age period (Rholes & Ruble, 1984; Ruble & Dweck, 1995). This
includes the propensity to causally explain human behavior in terms of
personality traits.

In particular, people explain the causes of human actions in different
ways. First, they may attribute a person’s actions to internal, individual, and
enduring characteristics (i.e., traits). An internal attribution places the cause
of behavior in the mind of the acting agent. To revisit the case of inter-
preting the opening of a door, we might see someone open a door and think
she did it because she is the kind of curious person who enjoys opening
doors. Second, people may attribute actions to external situations, circum-
stances, or other objects in the environment. An external attribution for
opening the door might be that it was a hot day outside or that the cat needs
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to be let in. These different styles of attribution have far-reaching conse-
quences; social psychologists have found that a preference for one type of
causal explanation and attribution affects other kinds of social cognition and
behavior, such as motivation, achievement, blame, mental health, and
general emotional well-being (e.g., Levy & Dweck, 1998), even in children
(Levy & Dweck, 1999; Patrick, Skinner, & Connell, 1993). Especially in
Western cultures, many adults have a bias to attribute the actions of others to
individual enduring traits of the person rather than to external situations
(Jones & Harris, 1967; Ross, 1977). Some researchers have suggested that
this is because these adults have developed an intuitive theory that explains
action in terms of such traits (Molden, Plaks, & Dweck, 2006; Morris &
Peng, 1994; Rosati et al., 2001). That theory might then bias the observer’s
interpretation of behavioral evidence toward favoring internal causes.

Where do these attributions come from? It is unclear when and why
children begin to explain action in terms of internal, individual, and
enduring traits. Even very young children explain action in terms of
internal mental states (Flavell, Flavell, Green, & Moses, 1990). However,
trait explanations include two additional factors beyond mental states
themselves – traits are specific to particular individual people, and they are
constant over time and across situations. Many researchers have demon-
strated that children do not spontaneously explain actions in terms of traits
or endorse trait explanations for a single instance of behavior until middle
childhood (Alvarez, Ruble, & Bolger, 2001; Peevers & Secord, 1973;
Rholes & Ruble, 1984; Shimizu, 2000). However, other studies show that
when preschoolers are given trait labels or behavioral frequency informa-
tion, they can use that information to make inferences about future
behavior and that they can infer the right trait label from frequent
behaviors (Boseovski & Lee, 2006; Ferguson, Olthof, Luiten, & Rule,
1984; Heyman & Gelman, 1999; Liu et al., 2007; Matsunaga, 2002). On
the other hand, these preschoolers still did not spontaneously construct trait
explanations; rather they simply matched the frequency of behaviors to
trait labels that were provided for them. This suggests that the failure to
attribute traits more broadly is not simply a problem with word compre-
hension or conceptual development.

More significantly, we do not know the learning mechanisms that
underlie the course of attribution in childhood and beyond. Kelley was one
of the first psychologists to suggest that person and situation covariation
evidence might play an important role in internal versus external attributions
(Kelley, 1967; Plaks, Grant, & Dweck, 2005). Empirical studies confirm that
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adults use statistical information tracking multiple people in multiple situ-
ations to make behavioral attributions (Cheng & Novick, 1990; Hewstone
& Jaspars, 1987; Morris & Larrick, 1995; Orvis, Cunningham, & Kelley,
1975; Sutton & McClure, 2001). However, adults already have intuitive
theories of action they can apply to the covariation data to interpret and
predict behavior. Could covariation play a role in the development of trait
attribution itself?

As we discussed earlier in this chapter, Bayesian causal learning theo-
ries, in particular, suggest that children make new rational inferences by
systematically combining prior knowledge and current covariation
evidence to arrive at the right causal hypothesis. This suggests a potential
mechanism for the development of attribution. Children may begin by
observing person and situation covariation evidence that confirms
a particular type of hypothesis, particularly the hypothesis that internal
traits cause actions. Once that theory has been highly confirmed, it will be
more difficult to overturn in the future, though it might still be over-
turned with sufficient evidence. Eventually, in adulthood, this may result
in a consistent “trait bias” that is difficult and thus requires a larger amount
of contrary evidence to overcome.

In a series of studies, we examined the developmental origins of Kelley’s
social schemas. We integrated research on the development of causal
inference and trait attribution to see if the same domain-general machinery
children used to learn about physical causation in our experiments on causal
imitation and causal testimony might also underlie their reasoning about
psychological causation.
3.1. Reasoning about Psychological Causes
First, Seiver, Gopnik, and Goodman (in press) conducted a study where 4-
and 6-year-old children observed a scenario of two dolls playing on two
activities (chosen from a bicycle, trampoline, and diving board). Children
were either in the doll condition (where the two doll characters acted
consistently on the two activities and differently from each other) or in the
toy condition (where both dolls played on one toy activity and did not play
on the other). The children in each condition received different covariation
information about the person and situation while still observing the same
overall frequency of playing and not playing. At the end, we asked the
children to explain the dolls’ actions (e.g., “Why did Josie play on the
bicycle?”) and predict their behavior in a future situation.
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In the doll condition, one doll always plays and the other doll never
plays. This evidence suggests that something about the individual rather than
the situation is responsible for their behavior. In the toy condition, the two
characters never play on one toy and always play on the other, suggesting
instead that the situation or the toy itself is responsible for their actions. So
how would children explain the dolls’ behavior in these two different
conditions? Four-year-olds more closely tracked the behavioral data than 6-
year-olds and offered explanations that matched the data. For example, in
the doll condition, when the overall pattern of behaviors indicated that
something about the person was responsible for the dolls’ behavior, both 4-
and 6-year-olds gave internal explanations for their behavior – explanations
about the person, including physical characteristics such as age or height or
mental states such as desires and beliefs. However, in the toy condition,
when the data indicated that the situations were driving the dolls’ actions
(i.e., they both played on one activity and did not play on the other), 4-year-
olds appropriately gave more external explanations – explanations involving
the environment or the specific toy activity – but 6-year-olds persisted in
giving internal explanations. This difference in attribution style between the
two age groups in the toy condition suggests that the 4-year-olds were more
sensitive to the covariation data than the 6-year-olds. Further evidence
included a control condition where children were asked to explain why
a single doll did or did not play on a single activity. In this case, the data are
ambiguous about the possible cause of the behavior. In the control condi-
tion, 6-year-olds gave internal explanations significantly more often than
chance and 4-year-olds were, correctly, at chance.

The prediction question provided additional evidence for 6-year-olds’
preference for internal causes. In the doll condition, children were asked
to predict whether each doll would play or not play on a new toy. Both
4- and 6-year-olds generalized from the previous pattern of data and said
that the doll who had played before would play on the new toy and the
doll who did not play before would continue to refrain from playing. In
the toy condition, children were asked to predict whether a new doll
would play or not play on the same two toys. Four-year-olds again
accurately assessed the data and said she would play on the toy the other
dolls played on but would not play on the one that they backed away
from. Six-year-olds, on the other hand, did not predict consistent
behavior in this case.

This provides further evidence for age differences in children’s behavioral
causal inference. Four-year-olds predicted the pattern of playing and not
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playing would be consistent in the future, irrespective of whether it favored
internal or external attributions. Six-year-olds thought that only the
behavioral data that supported internal attributions would generalize to
future behavior.

This pattern of results suggests that 6-year-olds have developed a specific
prior attributional theory that the internal qualities of a person, rather than
the situation, drive their behavior. Six-year-olds seem to have developed
expectations about the source of people’s actions, so when they are asked to
explain the cause of a person’s behavior, 6-year-olds use both the actual
evidence at hand and their prior beliefs to arrive at a conclusion. The 4-year-
olds, in contrast, seem to use a more general “bottom-up” data-based
strategy and only use the most immediately available data to draw
conclusions.

How domain specific or how general is this higher-order bias? Would it
only be applied to the case of psychological causation or would children
reason similarly about internal versus external causes of physical outcomes?
Studies with adults suggest that there is a relationship between cultural
attributional biases and seemingly unrelated views about physical causes.
Some studies have shown in adults that culturally based attributional biases
affect scientific reasoning (e.g., Morris & Peng, 1994). Even though
culturally based differences may be rooted in social cognition, they also cause
differences in reasoning about simple Newtonian physics. Westerners, for
example, who have a stronger social trait bias, are also more likely to
attribute causal power to individual physical objects rather than to rela-
tionships or forces.
3.2. From People to Magnets
To explore potential attributional biases in understanding physical causation,
we replicated the previous study with children but changed the outcome of
interest to a physical rather than psychological one – “stickiness” instead of
willingness to play. Without changing the task in any other way, we altered
the cover story to implicate physical instead of psychological causation.
Thus, rather than saying that the doll character was playing on the scooter,
we would say that the doll was sticking to the scooter. The relevant
explanatory question then became “Why did the Josie doll stick to the
scooter?” We again divided children’s responses into two categories. In
“internal” responses, children talked about the properties of the doll. In
“external” responses, they talked about properties of the toy.
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When we made this small modification, changing the language used to
describe the dolls to be physical rather than agentive, 6-year-olds lost their
overall preference for internal explanations. Moreover, for predicting future
sticking or not sticking, 6-year-olds now reliably extended the data pattern
in both conditions. That is, they were willing to use the most recently
available data to make causal inferences instead of relying on their prior
beliefs.

Four-year-olds, however, still gave more accurate explanations than
6-year-olds – they continued to follow the data pattern more closely and
gave more internal explanations in the doll condition and external expla-
nations in the toy condition. Closer examination of the results suggests that
once again the 6-year-olds had shifted from largely relying on the data to
relying instead on a prior bias. Unlike in the original psychological case,
however, the 6-year-olds gave explanations in terms of a rather different
everyday causal theory – namely, magnetism. They often appealed to the
scientific properties of magnetism, such as the relationship between magnets
and metal, in their explanations. They also were more likely to give inter-
active causal explanations that implicated both the doll and the toy as causes
for the outcome (e.g., “she has metal shoes and the skateboard is a magnet”).
Children never produced these interactive explanations in the social case,
and 4-year-olds rarely produced them in the physical case. These explana-
tions suggest that the 6-year-old children relied on a deeper and more
scientifically based causal framework about stickiness and magnetism, in
particular, rather than relying on the data. Four-year-olds tended to give
more vague answers such as “she has sticky stuff on her feet” and were less
sophisticated in terms of appealing to physical mechanisms and magnets.
However, they again tracked the data more accurately, perhaps due to this
less sophisticated understanding of magnetism’s interactive properties, and
therefore weaker prior beliefs.
3.3. Cross-Cultural Studies
We are also conducting versions of these studies in Beijing, China, to
compare children’s beliefs about psychological causes across cultures.
Research with adults shows that broadly speaking, the cultural preference
for trait explanations in the United States is not present in Chinese culture
(e.g., Morris & Peng, 1994). If there is truly a cultural difference in prior
expectations about the causes of people’s actions, then 6-year-olds in
a non-trait-biased culture should not perform the same way as the American
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6-year-olds; that is, 6-year-olds in China should not show a bias favoring
internal explanations. Although the data collection is still ongoing,
preliminary results suggest that 6-year-olds in Beijing have a similar
expectation in the control condition, where the data does not support an
internal or an external explanation, to American (and Chinese) 4-year-olds.
They are at chance for preferring internal or external explanations. These
findings suggest that by the age of 6, children’s prior beliefs about others’
behavior are influenced by culture and these attributional styles shape their
interpretation of new behavioral information.

4. CONCLUSIONS

Taken together, the studies in this chapter show how the tools of
probabilistic modeling and Bayesian learning can be applied to the social as
well as the physical domain and how the physical and social domains can
jointly inform each other. When children learn about causes from other
people, whether through demonstration or testimony, they appear to
integrate their prior hypotheses about pedagogy, cues to informant reli-
ability, and the statistical evidence they observe from people’s actions.
Children are sensitive to the pedagogical intent of a demonstrator and can
use this information to aid their decisions about which of the demonstrator’s
actions to imitate in order to bring about an effect. Similarly, children can
use an informant’s statements to help them evaluate the data produced by
a causal system and likewise can use these data to evaluate the credibility of
the testimony produced by an informant. They also can use covariation
information to decide whether a situational or psychological cause is a better
explanation for a person’s behavior and take into consideration whether the
event involves people or just physical objects. Together, these studies
demonstrate that causal reasoning and social reasoning are linked, both in the
real world and in children’s minds. When children reason about physical
causal systems, they are incorporating social information, and when children
reason about seemingly purely social issues like personality trait attribution,
they are applying the same causal reasoning that they use for physical
systems.

The rational constructivist approach can help us understand how chil-
dren resolve, and even benefit from, multiple sources of ambiguous and
probabilistic data, and social data, in particular, in order to solve challenging
causal learning problems. And because these data are often probabilistic,
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Bayesian models help us describe the complex, uncertain, joint inferences
about the nature of both other people and the world that underlie our ability
to learn from others. At the same time, the work on attribution shows how
similarly complex integrations between prior knowledge and current
statistics can lead children to understand the actions of others in a new way.
In fact, we can construe the information we get from people, either in the
form of testimony or observable actions, as causal information. These studies
suggest that children use covariation evidence to construct abstract causal
schemas that they then employ to explain the behavior of both the people
and the objects around them.

The studies on imitation and pedagogy, in particular, suggest that we
would be wise to fully consider the social environment when looking at
children’s physical causal reasoning. The degree of confidence that the social
demonstrator has, and the level of authority they convey to the child, might
not just socially influence the child to feel pressured to respond in a certain
way but also might actually change their inferences about the physical causal
events they are observing. In fact, incorporating this social evidence into
causal reasoning is a rational response, especially in the face of uncertainty.
Therefore, to get a complete picture of how children understand the causal
landscape of both the physical and the social worlds we need to understand
how they use the entire rich set of data they encounter in the real world.
Studies directly manipulating social information, such as how pedagogically
the demonstrator is behaving and how much certainty she expresses, inte-
grate the human element into experiments that model causal understanding.

Future research should computationally address how children develop
priors about the causes and results of people’s behavior and of the social
information they provide. What leads children to believe that a person is an
expert, and what process guides their assumptions based on that attribution?
What are the components of children’s pedagogical understanding, and
what prior beliefs do children have about the likely causes and effects of
pedagogical behavior? How do children integrate data about people’s beliefs
(via testimony) and actions when making attributions about people’s
behavior? How do children conceptualize people causing changes in other
people’s beliefs or actions? What are children’s prior beliefs about person-to-
person causes, and how would they parse these events? Furthermore, how
would they integrate physical causes into those judgments?

The studies in this chapter begin to show how we can move beyond
basic laboratory problems, like determining the causal structure of blicket
detectors, to more complex inferences that more closely mirror the real
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world. The probabilistic models approach can be applied to real and
ecologically significant kinds of conceptual change. It sheds new light on
classic topics in cognitive development such as the nature of imitation and
trait attribution. Instead of looking at how children evaluate individual or
isolated events, we can more appropriately study how children learn in and
from the complex social–physical environment that makes up the world
around them.
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