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Abstract
Capturing the structure of human conceptual knowledge is a
challenging but fundamental task. The most prominent ap-
proach, Multidimensional Scaling (MDS), usually requires
many similarity judgments, which leads to long experiments,
and only provides a representation of a fixed set of stimuli. In
contrast, we present a more flexible method that can generalize
to novel stimuli. This method uses a child-friendly task that
allows researchers to uncover the development of categories
with fewer participant judgments. We evaluate this approach
on simulated data and find that it can accurately reveal repre-
sentations even when trained on data generated by groups that
categorize differently. We then analyze data from the World
Color Survey and find that we can recover language-specific
color organization. Finally, we use the method in a novel de-
velopmental experiment and find age-dependent differences in
how fruit categories are structured. These results suggest that
our method is widely applicable in developmental tasks.
Keywords: Categorization, psychological spaces, child devel-
opment

Introduction
The ability to form categories develops in early infancy
(Quinn, Eimas, & Rosenkrantz, 1993) and allows us to extract
useful and generalizable features from individual exemplars
across a variety of everyday tasks. For example, when people
go grocery shopping, they rarely search for “green things”, or
“sweet things”. Instead, people shop based on categories, like
“apples” or “candy”.

Adults tend to have similar expectations about many cat-
egories, having had numerous and broadly similar encoun-
ters with category members and their features, e.g., differ-
ent fruits and their variations in shape, color, texture, and so
forth. In contrast, in a domain where people must rely on
sparse evidence – as many domains are for young children –
it is plausible that different people will come to different con-
clusions about categories, based on the idiosyncrasies of their
own experiences. For example, if one has only encountered
a small set of fruits, say pineapples and bananas, one might
deduce that all fruits are yellow. In contrast, if this early expe-
rience includes oranges, one might infer that fruit colors can
be orange or yellow. As children go from knowing very little
to having adult-like categories, we might expect their beliefs
about categories to change systematically. Since children can
differ in their experiences, and thus in the types of expecta-
tions they develop, experiments need to be able to uncover
detailed, group-specific category structures that are robust to
individual differences.

However, directly accessing these structures in experi-
ments is challenging. As a result, it is more common to focus
on the judgments and choices people make that are guided
by their category structures, e.g., judgments of similarities
between pairs of items. Then, one can infer the category
structures that are most consistent with participants’ similar-
ity judgments. One of the most prominent approaches to infer
these category structures is multidimensional scaling (MDS;
Shepard, 1980). MDS is a method that assumes that the ob-
served data, usually similarities between items, results from
the items’ distances in a geometric psychological space.

For example, if a participant deems oranges and limes sim-
ilar but apples dissimilar from both, MDS would attempt to
position oranges and limes close together in psychological
space while keeping apples further away. This example high-
lights two important properties of the category representa-
tions that MDS finds: First, the dimensionality of the geo-
metric space directly affects how closely the distances can
mimic the similarity data. For some data, like the fictitious
participant who deems oranges and limes similar, but not ap-
ples, even 1-dimensional spaces (a line) can be sufficient. On
the other hand, high-dimensional spaces might be required to
faithfully capture similarity judgments for complex data.

Second, the geometric spaces that explain participants’
judgments do not have to match the perceptual features of the
stimuli. In our example, limes share colors with some apples,
but this similarity may be incidental to a person who knows
about typical textures and shapes of these fruits. Since MDS
is often used to uncover these psychological phenomena, the
recovered spaces are called psychological spaces. MDS has
been a crucial tool in uncovering psychological spaces rang-
ing from the perception of colors to facial expressions (for
an introduction and overview, see Borg & Groenen, 2005).
Moreover, data obtained via MDS have been vital in develop-
ing models of human cognition, such as the universal law of
generalization (Shepard, 1987).

MDS and Developmental Studies
While MDS offers a convenient way to chart psychological
spaces, it relies on obtaining reliable human similarity judg-
ments between items. Experimentally, obtaining these judg-
ments poses several challenges. First, many experimental
paradigms require participants to apply some implicit under-
standing of what kind of similarity is being measured – in
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which respect are the items similar (Medin, Goldstone, &
Gentner, 1993)? Furthermore, the participant must have an
explicit understanding of graded similarity, with some items
being more similar than others, which might not be warranted
for young children (Medin et al., 1993). Second, since mak-
ing a similarity judgment requires comparing two (or more)
items, and traditional MDS methods require measurements
of similarity for all item pairs, even small numbers of stimuli
can lead to prohibitively taxing experimental setups.

One common simplification to address these shortcomings
is to assume that the psychological space is 2D, and partici-
pants can express similarities in spatial distances (Goldstone,
1994). With this assumption, many similarity judgments can
be derived at once by asking people to organize items spa-
tially, putting similar items closer together and dissimilar
items farther apart, a task that is easily understood even by
preschoolers. Moreover, recent extensions of this technique
have suggested that while the task imposes 2D organizations,
higher-dimensional spaces can be learned when aggregating
participants (Richie, White, Bhatia, & Hout, 2020) and the
method can be used with young children (Unger, Fisher, Nu-
gent, Ventura, & MacLellan, 2016). However, questions re-
main about how reliable spatial ordering tasks are and how
strongly spatial biases influence participants’ perceived simi-
larity (Verheyen, White, & Storms, 2020).

Here, we propose a computational and experimental
method that can recover generalizable psychological spaces.
Instead of merely mapping observed stimuli to locations in a
psychological space, like most previous MDS methods, this
method learns a function from features of stimuli to a latent
representation that explains participants’ judgments. This
learned function can be applied to arbitrary new stimuli, lead-
ing to psychological spaces that are generalizable: predic-
tions can be made about the similarity of stimuli the partic-
ipant has not seen or rated and their location in the psycho-
logical space can be obtained. This flexibility has important
methodological implications and offers exciting prospects
that alternative methods cannot provide. However, we do
not argue that this method is universally preferable over met-
ric or non-metric MDS, or that it recovers better spaces than
alternative methods when abundant similarity judgments are
available. Instead, we think that this approach is competitive
with MDS solutions and has the unique feature of providing
a generalizable solution.

Learning Similarities Implicitly
The method we are proposing as a computational and ex-
perimental paradigm is based on an approach from computer
science called deep metric learning, a family of deep neural
network architectures that learn similarities from groupings–
items that have been sorted into groups taken to be the “same”
type (with items across groups being “different”). The goal of
training this network is to uncover the psychological spaces
by learning to predict same-different judgments between ex-
perimental stimuli. Importantly, the classification into same
or different is based on the distance of the two stimuli in a
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Figure 1: DrLIM is a twin (or “Siamese”) deep metric learn-
ing network that uses two identical networks f with shared
parameters θ to project pairs of stimuli into an embedding
space. The network is then trained to minimize the error of
predicting same-different judgments for all pairs, given the
distance d in the embedding space.

geometric space, which is encoded in the output layer of the
network, see Figure 1.

These techniques produce a function that maps stimuli
in the domain to points in psychological space. One such
method, and the method we are using here, is dimension-
ality reduction by learning an invariant mapping (DrLIM;
Hadsell, Chopra, & LeCun, 2006). In cognitive science, Dr-
LIM has previously been used to elicit adult psychological
spaces from same-different judgments (Sanborn, Griffiths, &
Shiffrin, 2010)1. However, as in the approaches discussed
above, the experiment in Sanborn et al. (2010) required each
participant to produce many same-different judgments (90
judgments each), making the task too demanding for many
developmental settings.

Here, we evaluate DrLIM as a method for learning psy-
chological spaces in developmental studies. This goal raises
two important requirements. First, while adult studies can
sometimes afford to present each participant with the full set
of possible category members, or ask them to make compar-
isons between all pairs of items, these high cognitive and at-
tentional demands are not practicable in most developmental
settings. Therefore, DrLIM must be applicable in experimen-
tal designs in which each child only encounters a subset of all
stimuli, and psychological spaces are aggregated over those
subsets. Second, if our aim is to understand how category
representations change over development, we must be able to
aggregate data by age, and recover commonalities that are ro-
bust to individual differences between children. In particular,
DrLIM should be able to accommodate differences in catego-
rization or judgment strategies, e.g., one child might decide
all orange-like fruits are the same, and another might separate
mandarins and navel oranges.

We first used simulated data to validate that DrLIM is ro-
bust to aggregated responses of heterogeneous data, as this
allows us to compare the solutions obtained with DrLIM
against the ground-truth data. Then, we tested DrLIM in the
psychologically relevant domain of color categorization, with

1A similar method was also used in work by Lee (1997). In con-
trast to our work, this early approach was trained on pre-computed
features of the stimuli to capture adult categorization results.
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data from the World Color Survey(WCS; Kay, Berlin, Maffi,
Merrifield, & Cook, 2009), and found that it could recover
language-dependent color representations. Finally, we con-
ducted an experiment with children and adults, showing that
our approach is effective and can be used to recover categori-
cal organization with children as young as four.

Simulations
To establish that DrLIM can recover meaningful spaces for
aggregated agents, we first validated it on simulated data.
This evaluation is critical since previous work by Sanborn
et al. (2010) only analyzed individual participant data. How-
ever, when aggregating data, participants can differ in the cat-
egories they use, for example, categorizing at different levels
of specificity, or, in developmental studies, using incongruent
or idiosyncratic categories.

Simulating Aggregate Groupings
We constructed a synthetic category structure from four fea-
ture distributions a,b,c,d. The feature distributions were nor-
mal, bi-variate distributions, shifted in x and y according to
two variables xs and ys, µ = [[−1,1], [−1,ys], [xs,1], [xs,ys]].
The two variables controlled how far apart in x and y the four
distributions were on the 2D plane. We generated 30 features
samples from each distribution. Samples were clearly sepa-
rable in x, xs = 5 and less separable in y, ys = 2.5. For the
resulting samples and spaces, see Figure 2.

We generated a set of 20 simulated agents, with each agent
having an implicit categorization rule that grouped the syn-
thetic features either at a high level or at the feature level.
High-level classification merged pairs of features into two
categories, for example [a,b], [c,d]. In contrast, agents classi-
fying at the feature level produced four categories. Agents
probabilistically classified each stimulus according to the
softmax over the ground-truth class-membership likelihoods
(the choice axiom, Luce, 1959). To simulate the behavior
of a heterogeneous group of people categorizing items ac-
cording to different criteria, we created two types of agents:

Feature Space

Figure 2: The true feature space that generated the category
structures and 2D solutions for the five agent simulations.

high-level categorizers (AB,CD, or AC,BD) and feature-level
categorizers (A,B,C,D). We then combined these agents in
four types of agent-aggregations: all high-level categoriz-
ers, all feature-level categorizers, 50/50 mixtures of feature-
level and high-level categorizers (AB,CD/A,B,C,D), and
a 50/50 mixture of both types of high-level categorizers
(AB,CD/AC,BD) .

We used a 3-layer network with interspersed dropout layers
(10% dropout). The output layer varied from 1-4 units, cor-
responding to the dimensionality of the solutions. All other
layers had 30 units and rectified linear activation functions.
We optimized contrastive loss (Hadsell et al., 2006) using
stochastic gradient descent for 800 epochs. The loss margin
was set to 0.5, and we repeated the procedure 25 times.

Results

Overall, we could recover the simulated spaces, both in terms
of the dimensionality of the best-fitting solution and the ar-
rangement of points within those spaces. When all agents
grouped items based on the low level, we recovered the full
feature space. In contrast, if all agents grouped based on high-
level features, our solution collapsed to those two features.
Crucially, even when the data consisted of conflicting aggre-
gations, we recovered features of the ground-truth space.

The difference in loss for dimensions 1-2 ranged from M=
2× 10−4 for AC,BD to M = 1.3× 10−2 for AB,CD/AC,BD.
Subsequent dimensions did not reduce loss considerably, in-
dicating that 2D solutions achieved acceptable results (all
loss reductions < 1× 10−4). For all 2D results, see Figure
2. Training loss reflected the complexity of the simulations:
Homogeneous agent populations resulted in lower loss than
mixtures of classification schemes, and overlapping feature
boundaries (AB,CD) increased loss. Finally, heterogeneous
simulations were the most difficult to train, with the mix-
ture of inconsistent populations of high-level classification
schemes AB,CD/AC,BD producing the highest overall loss.

The spaces correctly collapsed onto two feature-groups for
homogeneous high-level simulations, whereas the feature-
level simulation, A,B,C,D, maintained the original structure.
Crucially, mixtures of categorization schemes reflected the
global structure of the feature space.

To quantify the accuracy of our solutions–how well the cat-
egory space recovered by DrLIM represented the true under-
lying category distributions–we clustered the items according
to their location in the 2D space learned by DrLIM, using k-
means, with k set to the true number of item groups. The
clustering recovered the true clusters with a high accuracy (k-
means accuracy AB,CD = 100%, AC,BD = 98%, A,B,C,D =
97%, AB,CD/A,B,C,D = 86%, AB,CD/AC,BD = 75%).

In addition, we compared our approach with non-metric
MDS solutions trained on co-occurrence, using the widely-
used SMACOF package (De Leeuw & Mair, 2009). Our so-
lutions aligned well with the solutions obtained by non-metric
MDS, both in terms of the dimensionality of the solution (2-
dimensional solutions across all simulations were acceptable)
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and the 2-dimensional spaces recovered2. Across simula-
tions, our results strongly resembled the results obtained by
MDS (all correlations between pairwise distances R2 > .93,
all p < 0.001).

Our simulation results confirmed that our method could
recover the complexity and structure from aggregated data.
Moreover, when simulations consisted of heterogeneous
agents, we still recovered important features of the underly-
ing feature space. Next, we test our methods in a more psy-
chologically relevant domain - language-specific variability
of color spaces.

Uncovering Language-specific Color Spaces
Color categorization is a central testing ground for theories
of language, perception, and the origins of human cognition
(Skelton, Catchpole, Abbott, Bosten, & Franklin, 2017; Wat-
son, Beekhuizen, & Stevenson, 2019). While color percep-
tion is rooted in the biological transformation of light’s physi-
cal properties, color categorization exhibits cross-cultural and
individual variability. As such, color naming data provide an
interesting test case for our approach. Here, we evaluate the
applicability of DrLIM to heterogeneous datasets by train-
ing on data from the World Color Survey3 (WCS). The WCS
dataset contains color terms for 330 color chips from speakers
of 110 languages in non-industrialized societies.

In order to evaluate DrLIM on color spaces of varying
complexity, we evaluated six languages: two three-term lan-
guages (the smallest number of basic color terms in the
WCS), two seven-term languages (the most frequent number
of basic color terms in the WCS), and two 11-term languages
(the number of basic color terms in English). To determine
the number of color terms in each language, we assigned
each chip to the majority color term used to label it. We then
categorized all pairs of chips for each speaker in each lan-
guage, categorizing them as the same if the speaker assigned
the same term for both colors. We used the same network as
for the agent simulations but increased the maximum output
dimension to 6 to account for the data’s higher complexity.

Results

Overall, DrLIM was able to uncover language-specific psy-
chological spaces underlying color terms. Consistent with
previous work, our results find good fit with 2D spaces. Fur-
thermore, colors deemed highly salient, or focal, aligned
well with clusters in the uncovered spaces. Similar to the
simulation results and consistent with the structure of per-
ceptual color spaces, 2D solutions achieved acceptable loss,
with subsequent dimensions offering only minor reductions.
Loss improved on average 0.14 for dimensions 1-2 (all sub-
sequent improvements < 0.04). The resulting 2D spaces cor-
responded well to the number of terms within a language.

2For the aligned 2D solutions obtained via SMACOF, see
https://osf.io/c85vd

3https://www1.icsi.berkeley.edu/wcs/

3 Terms 7 Terms 11 Terms

Figure 3: Six WCS languages that differ in their number of
terms (columns). To display the high-dimensional data, we
bin colors in a 25 × 25 hexagonal grid and only display bins
with ≥ 2 colors. We then calculate the most representative
color for each bin. In addition, rug plots display the distri-
bution of terms within the 2D space. We overlay the most
frequent focal colors, as collected in Kay et al. (2009).

Focal colors4, which speakers deemed the most representa-
tive of each color term were positioned on separated clusters
within the learned space. In contrast, colors for which speak-
ers disagreed in their color terms often interpolated between
the clusters, see Figure 3. To assess if the solutions captured
the color terms used in each language, we applied k-means
clustering to the 2D solutions, with k set to the number of
majority color terms in the language. The clustering recov-
ered the colors the speakers judged the same or different ac-
curately (across all languages ≥ .72%).

Overlapping Subsets The color dataset corresponds to a
balanced design with a large number of judgments per par-
ticipant, with each speaker receiving and labeling all 330
color chips. However, often experiments require participants
to rate subsets of items, with little overlap between partici-
pants. To evaluate if DrLIM is robust to such designs, we
fitted the model to subsets of the WCS. We selected a set
of 75 color chips at random and varied the overlap of col-
ors between speakers. The sets were created by sampling the
overlapping chips without replacement from the subset (25%,
50%, 75% out of 75) and selecting the remaining colors from
the subset’s complement. To evaluate the resulting models,
we correlated the solutions provided by the overlapping data
with the full dataset. All overlapping models produced highly
correlated solutions (all R2 > .86).

Interim Discussion
DrLIM produced encouraging results for both the simulated
and color data, recovering domain structure and relevant clus-
ters. These results are novel contributions to the approach

4These were colors that were collected from language informants
in Kay et al. (2009) and that were considered the most representative
for the color terms in each language.
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in Sanborn et al. (2010), as they establish that DrLIM can
be used with aggregated data even for heterogeneous simu-
lations or when language speakers do not receive the same
stimuli. This suggests that the method can produce meaning-
ful psychological spaces in developmental experiments, even
if children exhibit some individual differences in their sorting
behavior or in experiments in which it is unfeasible to present
all stimuli exhaustively.

Uncovering Age-dependent Fruit Spaces
We evaluated the item groupings of young children and adults
for a set of stylized fruits, a stimulus set previously used to
uncover psychological spaces and latent category distribu-
tions (Sanborn et al., 2010; León-Villagrá, Otsubo, Lucas, &
Buchsbaum, 2020). To make the task more accessible to chil-
dren, we collected same-different pairs via a grouping task,
in which children were asked to place similar fruits in boxes.

Participants
Participants were split into three age groups of N = 30 each:
4-5 years old, 6-7 years old, and adults (18 years or older).
Adults were recruited from the Greater Toronto Metro Area
(Mage = 21.13, SD = 5.25, 25 female). Children were re-
cruited from a local Toronto museum. An additional 15 chil-
dren were excluded according to our preregistered criteria: 7
for picking an incorrect fruit in the familiarization task, 5 for
placing all stimuli into one box, and 3 for not completing the
experiment5. For 4-5-year-old children, Mage = 4.57, SD =
0.5, 16 female, and for 6-7-year-old children, Mage = 6.4, SD
= 0.5, 13 female. Adult participants received $10 or course
credit, and child participants received a small toy.

Materials and Procedure
The experiment consisted of a familiarization task to verify
that the participant understood the task and a grouping task.
In the familiarization task, the participant was told to imag-
ine going to a grocery store and was presented with 16 cards
(9×6 cm) displaying the fruits. The cards were presented in
random order in a grid of 4 × 4 cards in front of the partic-
ipant. The participant then was shown one of four possible
fruit cards (the target fruit) and asked, “Can you help me find
one more of this kind of fruit?”. Once the participant selected
a card, the chosen card was removed, and the question was
repeated (five questions in total).

Fruits on the 16 choice cards were one of four colors (red,
orange, green, or purple) and one of four shapes. Three
cards matched a particular target exactly in color, and three
matched exactly in shape. The remaining cards did not match
in color or shape. Fruits were programmatically generated
using the method described in Sanborn et al. (2010). Each
fruit was a single-colored convex hull around three equally
sized circles; see Figure 4. Six parameters determined the
fruit’s appearance: three determined its shape (radii, horizon-
tal distance, and vertical distance), and three determined its

5The preregistration is accessible at https://osf.io/c85vd
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Figure 4: Examples of programmatically generated fruits

color (hue, saturation, lightness). Each fruit was topped with
a brown stem to orient the participants to the top of the fruit.

In the main task, participants were told they were “in
charge of the grocery store” and presented with a random set
of 36 cardboard tiles (5×5 cm) out of 180. To evenly cover
the stimulus set, a 6-dimensional Sobol sequence determined
the fruit’s shapes and colors in the main task. In addition to
the tiles, participants also received 36 paper boxes made by
folding a single sheet of letter-size paper. Participants were
asked to place all fruits into the boxes, with fruits of the same
kind going into the same box. After completing the main task,
participants were asked to explain why they grouped cards to-
gether for three boxes (“You put all of these fruits in the same
box. What makes these the same kind of fruit?”). The three
boxes were selected at random from all boxes that contained
at least two fruits.

Results and Discussion
We used the same model and training procedure as for the
WCS data, training on the six parameters defining the fruits.
Again, across all age groups, loss was acceptable for 2D solu-
tions allowing us to focus on these for comparison and visu-
alization purposes, see Figure 5. The spaces of 4-5-year-olds
exhibited gradual changes in the saturation and color of fruits
but less differentiation in terms of shape, potentially reflect-
ing a preference for color-based groupings. In contrast, adults
exhibited less organization according to color. Instead, fruits
were organized broadly around shape differences. We quan-
tified how similar the three resulting 2D spaces were by cal-
culating the distances between all points within an age group
and correlating these distances. The youngest children exhib-
ited the lowest mean distances (M = 0.03, SD = .02), while
the spaces of 6-7 year-olds (M = 0.16, SD = .08) and adults
(M = 0.31, SD = 16) where more dispersed. We then corre-
lated the item-wise distances across age groups. These corre-
lations matched our qualitative descriptions of the 2D spaces:
4-5-year-olds did not correlate strongly with 6-7-year-olds
(R = 0.11) or adults (R = 0.03). In contrast, 6-7-year-olds
exhibited similar distances to adults (R = 0.33).

To obtain an additional measure of which features partic-
ipants deemed relevant, we coded the choices in the famil-
iarization phase as matching in color or shape. Consistent
with the 2D spatial organization, we found an effect of age
on the number of shape matches, F(2,87) = 8.48, p < .0001.
Post-hoc comparisons using a Tukey test indicated that adults
selected significantly more shape matches than 4-5-year-olds
(Madults = 3.33, M4-5 = 2.3, p = .001) and 6-7-year-olds
(M6-7 = 2.5, p = .005). In contrast, we did not find an ef-
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4-5

6-7

Adults

Figure 5: The 2D fruit spaces uncovered by our method (left
column). To contrast the placement of fruits in the three
spaces, we selected a set of three fruits, matching in color or
shape, and highlighted their location. For 4-5-year-olds, fruits
matching in color are placed nearby, whereas those matching
in shape are on opposite sides. In contrast, for adults, the
fruits matching in color are far apart. To facilitate inspection
of the resulting spaces, we also display the shapes of the fruits
(central column) and binned the space hexagonally, showing
the most representative color in each bin (right column, fol-
lowing the procedure outlined in Figure 3).

fect of age on color matches, F(2,87) = 2.75, p = .069. Both
adults (M = 2.5) and children produced similar numbers of
color matches (M4-5 = 3.0, M6-7 = 3.1).

Explanations To examine whether the spaces were consis-
tent with the participants’ explanations, the two first authors
transcribed the responses. Consistent with the spaces uncov-
ered by our method, adults predominantly named shape (59
out of 115) and color (34) as the grouping feature. 6-7-year-
olds gave color (33 out of 91) and shape (30) at comparable
rates. Finally, 4-5-year-olds preferred color (36 out of 93)
over shape (15), see Figure 6.

General Discussion

Our work develops DrLIM into a widely applicable compu-
tational and experimental paradigm, showing that the method
can reconstruct meaningful psychological spaces in short ex-
periments in which participants do not receive the full set of
materials. In simulations, we found that the model could re-
construct the agents’ categorization schemes, even for het-
erogeneous agent populations. Furthermore, we showed that
we could uncover color representations for languages in the

0 50

Color
Shape

Size
Fruit

Stem
Ripe

Other

4-5

0 50

6-7

0 50

Adults

Figure 6: Adults mostly named shape followed by color when
asked why they grouped the fruits. Instead, 6-7-year-olds
named color and shape, and 4-5-year-olds preferred color.

WCS, even when we trained on datasets without full overlap.
We then performed the first application of DrLIM to a

developmental setting, successfully recovering psychologi-
cal spaces across multiple age groups, including children as
young as four years old. We found that the recovered spaces
exhibited age-dependent biases for how fruits are represented.
These results were consistent with secondary measures, such
as the sequence of choices in the familiarization task and par-
ticipants’ explanations. Our approach is a promising experi-
mental paradigm for developmental studies of category repre-
sentation, and our method can uncover similarity judgments
in short and straightforward experiments.

Outlook and Future Studies
Future work should examine if deep metric learning can
be generalized to uncover individual differences within age
groups, for example extending DrLIM to weigh dimensions
in the psychological spaces for each participant, similar to
recent extensions to MDS approaches (Okada & Lee, 2016).

More generally, we see our method as a way to bridge a
plurality of experimental results. Since we learn an implicit
similarity function, stimuli that were not used to construct the
function can be projected into a shared space, for example al-
lowing results from different experiments to be projected into
a shared psychological space. Results obtained through sim-
ilarity judgments, spatial sorting, or category generalizations
could be contrasted in a shared space, allowing broad com-
parisons between experimental paradigms. This aspect of the
method offers the prospect of developing general cognitive
embeddings, much like recent universal language representa-
tions (Cer et al., 2018).
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