
---

C Self-adjoint operators and complete 
orthonormal bases 

The concept of the adjoint of an operator plays a very important role in 
many aspects of linear algebra and functional analysis. Here we will primar
ily focus on sell~adjoint operators and how they can be used to obtain and 
characterize complete orthonormal sets of vectors in a Hilbert space. The 
main fact we will present here is that self-adjoint operators typically have 
orthogonal eigenvectors, and under some conditions, these eigenvectors can 
form a complete orthonormal basis for the Hilbert space. In particular, we 
will use this technique to find a variety of orthonormal bases for L2 [a, b] that 
satisfy different types of boundary conditions. 

We begin with the algebraic aspects of self-adjoint operators and their 
eigenvectors. Those algebraic properties are identical in the finite and infinite 
dimensional cases. The completeness arguments in infinite dimensions are 
more delicate, we will only state those results without complete proofs. We 
begin first by defining the adjoint. 

D efinition C.l. (Fini te dimensional or bounded operator case) Let A 
H I -; H2 be a bounded operator between the Hilbert spaces HI and H 2. 
The adjomt A' : H2 ---; HI of Xis defined by the req1Lirement J 

(V2, AVI )~ = (A''V2, v])], (C.l) 

fOT all VI E HI and'V2 E H2· 

Note that for emphasis, we have written (. , .)] and (. , ')2 for the inner products 
in HI and H2 respectively. It remains to be shown that the relation (C.l) 
defines an operator A' from A uniquely. We will not do this here in general 
but will illustrate it with several examples. 

Examples 

Example C. 2. In the finite dimensional case, i.e. when A is a matrix, A' is 
simply the c;omplex c;onjugate transpose of A as' we now demonstrate. Let A 
be an n x m matrix, it can be viewed as a lJJ1ear illap')1~ en 
Let 's temporarily denote the complex conjugate transpose of a matrix or a 
vector by 1. ThuS' the inner product in en is' given by (v ,w) = vtw. Now, 
equation (G.l) becomes 

-
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for all vectors Vj and V2 This in tum implies that A (A*)t or equivalently 
that 

i.e. the adjoint of a matrix is the complex conjugate transpose of that matrix. 

Example C.S. Let T : L2[a, b] ---; L 2[a, b] be the bounded operator defined 
'bythe continuous kernel function T(.,.) Specifically, T : f r-; 9 is given by 

g(x) = lb T(r,x) f(x) dx. 

We compute the kernel representation ofT* which we will denote by T* (., .). 
Translating the requirement (G.]) using the inner product of L2[0. , b] gives 

(h, Tf) = (rh, f) 

~lb ht(x) (TIl (x) d.T = lb ((T*h) (1')) Tf(1') dr, 

where again (.)t denotes complex conjugate transpose. Substituting the kern el 
represent;ations for T and T*, we obtain 

lb ht(x) (lJ T(x,X) f(x) dX) dx = lb (lb 
r(1',p) h(p) dP) t f(1') dr 

~lb lb ht(:.r) T(r,x) f(x) dXd:.r = lb lJ ht(p) (T*(r,p))t f(r) drdp, 

which can then be rewritten as 

This last equation has to hold for all functions hand f in L2 [0., b]. By using 
test functions (see problem G.15) for f and h, it is not difficult to verify that 

the kernels satisfy T(.T,X) = (T*(x,r)r Taking transposes of both sides 
and relabeling the arguments x and X we can then write 

T*(r,x) = Tt(X,x). 

Note the interesting pattern here; the kernel T* (., .) is given by "transpos
ing" the arguments of the kernel T(.,.) and taking the complex conjugate 
transpose at each point. This result is consistent with the interpretation of 
kernel functions as continuum analogues of matrices (see Appendix B). 
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For the proper defini tion of the adjoint in the unbounded operator case, 
domain considerations are important. 

Definition C.4. (Unbounded operator case) Let A . HI --+ H2 be an op
erator between the Hilbert spaces H I and H2 with domain D(A) C HI . The 
adjoint A* : H2 --+ HI of A is defined by the requirement 

(C.2) 

for all VI E D(A) and V2 for which it is finite. The set of such vectors V2 is 
the domain D(A*) C H2 of A* 

Examples 

Example C.S . Consider the following differential operator on L2[a , bj 

d 
D := - ,

dx 

For f E D(D) and 9 E L2, we evaluate (g , D J) and use integration by parts 
to obtain 

rb 
df 

(g,D/) = Ja gt(x) dx (x) dx (C.3) 

= g(x) f(x)l~ rb 
dg t 

- Ja dx (x)f(x) dx (C.4) 

=g(b)f(b) - (:x9,f). (C.5) 

Thus it is clear that for (G.2) to hold , D' must be given by 

D* = - ~ 
dx ' 

Note the difference between the domains of D and D*. 

Example e.C. Consider Llo , the second order derivative operator with ho
mogenous Dirichlet boundary conditions defined on L2 [a, bj by 

For f E D(Llo) and 9 E L2, we evaluate l 

1 	 Here we use the no tation l' and f" for the first and second derivatives of a 
function f respectively 
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bgt(g,.d.of) = 1 (X) f"(x) dx (C.6) 

= g(x))' (x) I~ 1b g't (x)/, (x) dx (C.7) 

== g(x)!,(x)l~ g'(x)J(x) l ~ + 1b gilt (x)f(x) dx (C.B) 

== gJi/' (b)l~ \ d~2 g, f) .+ (C.g) 

Thus for (G.2) to hold, .d.o must be defined as ~ on the domain of twice 
differentiable functions 9 E L2 with g(a) = g(b) = O. This is precisely the 
same definition and domain as .d.o , and we therefore conclude 

We have concluded that .d. o is equal to its adjoint. Such operators are called 
self-adjoin t. 

Self-adjoint operators 

Definition C.7. Let A be an operator from a dense domain D(A) <:;;; H II 
to the same Hilbert space H. A is called self-adjoint ifD(A*) = D(A) and 
A* = A. 

In the finite dimensional case, a self adjoint matrix is a matrix that is equal 
to its complex conjugate transpose, i.e. a Hermitian matrix. Sometimes self
adjoint operators are also called Hermitian operators. There are two very 
important properties of selt~adj oint. operators that are easy to demonstrate. 

Lemma C.8. Let A be a self-adjoint operator on a Hilbert space H , then 

- All the eigenval'ues 0/ A ar'e real. 
- If VI and V2 are eigenvectors of A corresponding to distinct eigenvalues 

)'1 =1= A2, then VI and V2 are orthogonal. 

Proof. Let t denote complex conjugation. If A is an eigenvalue of A, then :J 
a nonzero eigenvector v with Av == A'll. Starting from the middle equality in 
the following equations (which follows from A = A*), we complltr 

Atllvl12 = (AV,V) == (Av , v) = (v,Av) = (V,AV) = Allvll 2 

Since Ilv ll =1= 0, we conclude that At == A, ie. A is real. 
To prove the second statement, we again start from the middle equality 

(wllich again follows from A == A*) in 

Adv I ,'U2) = (AVI , V2) = (VI, AV2) = A2 (V I, V2) , 

which implies that (VI, V2) = 0 since AI =1= A2. 
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In the case of repeated eigenvalues , one can still make statements similar 
to the ones above. If A has two linearly independent eigenvectors w, v with 
the same eigenvalue A, then any vector in the two dimensional subspace 
spanned by {w ,v} is an eigenvector with eigenvalue A. In this case , we can 
pick two orthonormal vectors in that space that span it. This procedure can 
be applied to eigenvalues of any mUlitplicity. The resulL is Lhat we can choose 
a complete orthonormal basis from amongst the eigenvectors of a self-adjoint 
adjoint operator. The precise statement follows, though its complete proof is 
not given here. 

Theorem C.g. Let A be a self adJoint operator defined on a dense domain ] 
in a Hilbert space H. Tf A has a discrete spectrl1m, then ther'c exists an or
thonormal set of eigen'uectors of A thal span all of H. 

This result is normally used to construct bases for function spaces lLke [2(X) 
that satisfy certain boundary conditions. To do this, one must be able to 
construct a self-adjoint operator whose domain is specified uy those boundary 
conditions. This is only possible for certain kinds of boundary conditions. We 
illustrat.e th is technique wiLh two examples. 

Example C.10. Consider the operator LJ.D described in exa.mple 0.6. This op
erator is self-adjoint as demonstrated in that example. We now determine its 
spectrum. If it turns out to be discrete, then we can use the eigenfunctions as 

a complete orthogonal basis o[ L2[a, b] which have the property o[ being zero 
at the boundary points Q. and b. For computational simplicity, let's consider 
the problem over [2 r-1f ,1f] tbough the procedure is applicable to any finite 
interval. 

A non-zero function ¢ E L2 [_ 1f, 1f] is an eigen function of LJ.D if ¢(± 1f) = 0 
(i.e. it is in V(LJ.D )) and LJ.D¢ = A¢ or equivalently 

d2 


-d2 ¢(x) = A¢(X), q'J(± 1f) = O. 

:r 

This is a second order ODE with constant coefficients. it may not have so
lutions that satisfy the boundary conditions [or all A. We first characterize 
the numbers A [or which there exists soluiions, and then construci those so
lutions. The characteristic roots are given as the roots of the polynomial (in 
0) (a2 - A) = O. The form of the solutions depends on whether A is positive 
or negative, they are 

¢(x) == ae~ r + /; e-~r ifA >O, 


¢(x ) = acos(.Jf,\! x) + b sin(.Jf,\! x) i[ A < O. 


We first note that the case A > 0 can not sat isfy the given boundary cOlldi
tions since in that case 

o = ¢(1f) = a e"~ + b e-"~ 
o = ¢(-1f) = a e-"~ + b e"~ 

http:acos(.Jf
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for which the only solution is a :=: b =O. Now, considering the case).. < 0, we 
need to satisfy 

0= o.cos(1fM) + bsin(1fM) 
0 = o.cos(-1fM) + bsin(-1fM). 

The existence of a nonzero pair (a, b) that satisfy the above is equivalent to 

which is equivalent to 

This means that 21fM = i1f, where i = 1,2, .... From this we conclude 
that the set of ).. < 0 for which we can satisfy the boundwy conditions is 
given by 

i = 1,2, 

Thus we have found the eigenvalues of ,do and they indeed Form a discrete 
set. Th e corresponding eigenfunctions are given by 

i i 
<Pi(X) = aicos('2 x) + b,sin(2 x). 

Enforcing the boundary conditions at ± 1f 

ai = 0 for i even 
{ bi = 0 for i odd 

These functions can be lis ted in a more compact manner by noticing that for 
i even sin(~x) = ± sin(Hx+1f)) , and fori odd cos(~x) = ±sin(Hx+1f) ) 
Thus all the eigenfunctions of ,dD can be listed as 

A graph of the first four such functions is shown in Pigure 1.4. The fact 
that these arc mutually orthogonal and span all of L2[_ 1f, 1f] follows the self
adjointness of ,do and that we have shown the discreetness of its spectrum. 
The functions are not normalized. A simple computation shows that II<pill = 
..;;, and so we redefine those functions to make them orthonormal by 
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Example C.lI. In this examplc, we would like to construc t a self-adjoint 
operator whose domain is specified by some given boundary conditions. Once 
such all opeTator is constructed, its eigenfunctions will then give the desired 
orthonormal basis. 

Suppose we would like to find an orthonormal basis {cp,} for L2 [- 1,1] 
such that 

CPi(±1) = 0, 	 dcp (±1) = O. (C.lD)
dx 

One way to achieve this is to construct a. self-adjoint operator on L2 [-1, 1] 
whose domain is given by those boundary conditions. Since we have four 
boundary conditions, said operator will need to be a fourth order differen
tial operator. The general form of a fourth order differentia.l operator with 
constant coefficients is 

where for simplicity of nota/jon we use D := d~' As shown in Problem G16, 
a necessalY condition for A to be self~adjoint is that it contains only even 
order terms, hence a.3 = a] = O. We investigate whether a pure fourth order 
term by itself is sufficient. From Problem C.16 we can state 

By inspecting the bounda.ry terms, we see tha.t if f is such that f (±1) 
J'(±1) = 0, then for all functions 9 with g(±1) = g'(±1) = 0 we get that 
(g, D4 f) = (D4 g, f). This implies that if we define 

then it follows that A* = dd:', and that V(A*) =V(A). The reader is asked to 
verify this carefully as an exercise. We have thus found a self-adjoint operator 
whose domain is given by the desired boundary conditions (Gl0). To find the 
eigenvalues of A, one needs to find the real values A for which the equation 

d'l 	 dq;
dx4 cp(x) - Acp(X) = 0, CPi(± l) = -(±l) = 0,

dx 

has a solution. Those values turn out to form a discrete set. The eigenfunc
tions are then fOllnd by solving the differential equation at those values of 
A. A complete orthogonal basis for L2 [- 1, 1] satisfying the boundary condi
tions (GIG) is thus obtained. 

-

http:bounda.ry

