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Jean-Luc Guermond et.al proposed an entropy-based nonlinear viscosity ([2, 3]) to solve hyper-
bolic equations.

1. Algorithm

We consider the hyperbolic equation

∂tu + ∇ · f(u) = 0, u(x, 0) = u0(x), x ∈ Ω, t > 0 (1)

subject to appropriate boundary conditions. It is well know that Cauchy or the initial boundary
value problem has a unique entropy solution satisfying

∂tE(u) + ∇ · F (u) ≤ 0, (2)

where entropy E(u) is a convex function and F (u) =
∫

E′(u)f ′(u)du is the entropy flux. The idea
of the entropy-based nonlinear viscosity is to construct viscosity through the entropy residual:

D(x, t) = ∂tE(u(x, t)) + ∇ · F (u(x, t)),x ∈ Ω, t > 0. (3)

Let uh(·, t) be the numerical approximation of the exact solution u at time t (and similarly subscript

h denote the approximation of the variables). The entropy viscosity method comprises of the
following steps ([3]):

(1) Given an entropy pair (E,F ), define the entropy residual:

D(x, t) = ∂tE(u(x, t)) + ∇ · F (u(x, t)),x ∈ Ω, t > 0.

(2) Use this residual to define a viscosity, say νE

νE(x, t) = cEh2(x)R(Dh(, t))/‖E(uh) − Ē(uh)‖∞,Ω,

where h(x) is the local mesh size at x ∈ Ω, Ē is the space-averaged value of the entropy,
cE is a tunable constant and R is a positive function to be decided (R(Dh) = |Dh| in this
report and also in [2, 3]).

(3) Introduce an upper bound to the entropy viscosity:

νmax(x, t) = cmaxhmax max
y∈Vx

|f ′(u(y, t))|.

Here Vx is a yet to be defined neighborhood of x, f ′(u(y, t)) is the local wave speed.
(4) Define the entropy viscosity:

νh = S(min(νmax, νE)),

where S is a yet to be defined smoothing operator that depends on the space approximation
(the simplest case is S = I).

(5) Augment the discrete form of the conservation law (1) with the dissipation term −∇ ·
(νh∇uh) and make the viscosity explicit.
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To conclude the equation we in fact solve is the advection-diffusion equation with artificial viscosity:

∂tu + ∇ · f(u) = ∂x(ν(u)∂xu). (4)

At time step tk+1, the viscosity ν is made explicit and evaluated at time tk.
This simple idea is mesh and approximation independent and can be applied to any equation or

physical system supplemented with an entropy equation/inequality.
For time integral, the semi-discretized equation

d

dt
U = L(U)

is solved with 3rd-order TVD Runge-Kutta (also called SSP Runge-Kutta [1]). To approximate
∂tE(u), second order finite difference is used:

∂tE
n ≈

3E(un) − 4E(un−1) + E(un−2)

2∆t
, n ≥ 2.

For n = 1 first order finite difference is used and for n = 0 let ∂tE = 0.

2. Computational results

In this section we present two 1-D computational results:

• Burges equation with shock wave fully developed:

∂tu + ∂x(u2/2) = 0, x ∈ [0, L]

u(x, 0) = sin(2πx/L).

The final time is T = L/4, which is 1/4 period.
• Long time evolution of transport equation.

∂tu + ∂xu = 0, x ∈ [0, 1]

with initial condition

u(x, 0) =



















exp(−300(2x − 0.3)2) |2x − 0.3| ≤ 0.25,

1 |2x − 0.9| ≤ 0.2,
(

1 − (2x−1.6
0.2 )2

)1/2
|2x − 1.6| ≤ 0.2,

0 otherwise.

The final time is T = 100 which is 100 period.

Figure 1 shows the initial condition and the final results for these two problems.

2.1. Fourier collocation method. For 1-D Burges equation, we set E(u) = u2/2, R(D) =
|D|, S = I. The result is shown in Fig. 2 Table 1 shows the convergence rates in L1 and L2

norm. We can see that for discontinuous problem the convergence rate in L1 norm is 1 and 0.5 in
L2 norm.

Table 1. L1 and L2 error and the convergence rate of the solution of Burges equation

h L1 rate L2 rate
2π/100 1.551e-1 - 2.715e-1 -
2π/200 8.095e-2 0.94 1.967e-1 0.46
2π/400 4.305e-2 0.91 1.408e-1 0.48
2π/800 2.168e-2 0.99 9.928e-2 0.50
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Figure 1. Initial condition and exact solution for Burges equation (left) on [0, L]
at T = L/4 and transport equation (right) on [0, 1] at T = 100. For the transport
equation the exact solution is the same as the initial condition so only one curve is
shown.
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Figure 2. Left: Solution of Burges equation on [0, 2π]. t = π/2, αmax = 2/π,
α = 0.1. Right: L1 and L2 error of the solution of Burges equation on [0, 2π] with
different h.

2.2. Spectral element method. The spectral element shape functions are the Lagrange poly-
nomials based on the k + 1 Gauss-Lobatto-Legendre points in 1D where k is the order of the
polynomials. The quadrature points are based on the Gauss-Lobatto-Legendre points so that the
interpolation points and quadrature points coincide. We compute the solution at t = 100, with
k = 2, 4, 8. The mesh is composed of 200/k cells so that the total number of degrees of freedom is
200. The parameters are set as cmax = 0.1/k, cE = 1.0,∆t = 0.1hmin. We can see from left plot of
Figure 3 that if we do not include viscosity there will be severe oscillations even with polynomial
of order 8. In the right plot of Figure 3 results by viscosity is shown. We can observe that there
is no oscillations in the result by using entropy-based viscosity.
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Figure 3. Solution of transport equation without viscosity (left) and with entropy-
based viscosity (right). In the right plot k = 8.
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