Smoothed particle hydrodynamics for fluid dynamics

Xin Bian and George Em Karniadakis

Division of Applied Mathematics, Brown University, USA

class APMA 2580 on Multiscale Computational Fluid Dynamics April 5, 2016 • Hw # 4: Finite difference method + MPI for Helmholtz equations

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

2 / 50

• If you need a multi-core machine: apply for a CCV account https://www.ccv.brown.edu/

Outline	Outline
 Background hydrodynamic equations numerical methods Mathematics of smoothed particle hydrodynamics some facts and basic mathematics kernel and particle approximations of a function first and second derivatives Particles for hydrodynamics continuity and pressure force viscous force 	 Background hydrodynamic equations numerical methods Mathematics of smoothed particle hydrodynamics some facts and basic mathematics kernel and particle approximations of a function first and second derivatives Particles for hydrodynamics continuity and pressure force viscous force
 ④ Classical mechanics for particles ⇒ hydrodynamics ● density estimate ● equations of motion 	 ④ Classical mechanics for particles ⇒ hydrodynamics ● density estimate ● equations of motion
 Solution of the second second	 Solution of the second second

1/50

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Background

- hydrodynamic equations
- numerical methods
- 2 Mathematics of smoothed particle hydrodynamics
 - some facts and basic mathematics
 - kernel and particle approximations of a function
 - first and second derivatives
- 3) Particles for hydrodynamics
 - continuity and pressure force
 - viscous force
- 4 Classical mechanics for particles \Rightarrow hydrodynamics
 - density estimate
- equations of motion
- 5 Numerical errors
- 6 Research challenges
- 7 A short excursion to other particle methods

Conservation law of momentum: Euler equations

Total pressure force acting on the volume (surface to volume integral)

$$-\oint pd\mathbf{f} = -\int \nabla pdV. \tag{5}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

For a unit of volume, momentum equations in Lagrangian form read

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p \quad \text{or} \quad \frac{d\mathbf{v}}{dt} = -\frac{\nabla p}{\rho}.$$
(6)

Considering the particle derivative is related to the partial derivatives as

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla, \tag{7}$$

the Euler equations in Eulerian form read

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{\nabla p}{\rho}.$$
(8)

Conservation law of mass: continuity equation

Total mass flows out of the volume V (per unit time) by surface integral

 $\oint \rho \mathbf{v} \cdot d\mathbf{f},\tag{1}$

where ρ density, ${\bf v}$ velocity and $d{\bf f}$ is along the outward normal. The decrease of the mass in the volume (per unit time)

$$\frac{\partial}{\partial t} \int \rho dV. \tag{2}$$

For a mass conservation, we have an equality

$$-\frac{\partial}{\partial t}\int \rho dV = \oint \rho \mathbf{v} \cdot d\mathbf{f} = \int \nabla \cdot (\rho \mathbf{v}) dV, \qquad (3)$$

which is valid for an arbitrary V. The continuity equation reads

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0. \tag{4}$$

<ロト < 部ト < 言ト < 言ト 書 のへの 6 / 50

Conservation law of momentum: Navier-Stokes equations

For real fluids, we need to add in viscous stress due to irreversible process and assume that the viscous stress depends only *linearly* on derivatives of velocity.

Without derivation, the Navier-Stokes equations read

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \left[\nabla \rho + \eta \bigtriangleup \mathbf{v} + (\zeta + \eta/3) \nabla \nabla \cdot \mathbf{v} \right]$$
(9)

For an incompressible fluid $\rho = const.$ and $\nabla \cdot \mathbf{v} = 0$. Therefore, the momentum equations simplify to

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \left(\nabla \rho + \eta \bigtriangleup \mathbf{v} \right).$$
(10)

For a compressible fluid, an equation of state is called for

$$p = p(\rho, T = T_0). \tag{11}$$

Background

- hydrodynamic equations
- numerical methods
- 2 Mathematics of smoothed particle hydrodynamics
 - some facts and basic mathematics
 - kernel and particle approximations of a function
 - first and second derivatives
- 3 Particles for hydrodynamics
 - continuity and pressure force
 - viscous force
- 4 Classical mechanics for particles \Rightarrow hydrodynamics
 - density estimate
 - equations of motion
- Numerical errors

Prof. Karniadakis will cover the mesh-based methods in other lectures

- finite difference method
- spectral h/p element method

•

 6 Research challenges 7 A short excursion to other particle methods	
Mesh-free discretizations: mesh-free = mess-free?	Outline
 Some particle methods smoothed particle hydrodynamics (SPH) moving least square methods (MLS) vortex method Voronoi tesselation mesh-free ≈ mess-free no mesh generation Lagrangian, no v · ∇v complex moving boundary incorporation of new physics 	 Background hydrodynamic equations numerical methods Mathematics of smoothed particle hydrodynamics some facts and basic mathematics kernel and particle approximations of a function first and second derivatives Particles for hydrodynamics continuity and pressure force viscous force Classical mechanics for particles ⇒ hydrodynamics density estimate equations of motion
•	

- **5** Numerical errors
- 6 Research challenges
- 7 A short excursion to other particle methods

Integral representation of a function

- Background
 - hydrodynamic equations
 - numerical methods
- 2 Mathematics of smoothed particle hydrodynamics
 - some facts and basic mathematics
 - kernel and particle approximations of a function
 - first and second derivatives
- Particles for hydrodynamics
 - continuity and pressure force
 - viscous force
- 4 Classical mechanics for particles \Rightarrow hydrodynamics
 - density estimate
- equations of motion
- 5 Numerical errors
- 6 Research challenges
- 7 A short excursion to other particle methods

Outline

- 1 Background
 - hydrodynamic equations
 - numerical methods
- 2 Mathematics of smoothed particle hydrodynamics
 - some facts and basic mathematics
 - kernel and particle approximations of a function
 - first and second derivatives
- Particles for hydrodynamics
 - continuity and pressure force
 - viscous force
- Classical mechanics for particles \Rightarrow hydrodynamics
 - density estimate
 - equations of motion
- Numerical errors
- Research challenges
- A short excursion to other particle methods

• It was invented in 1970s (author?) [12, 8].

Given a scalar function f(r) of spatial coordinate r, its integral representation reads

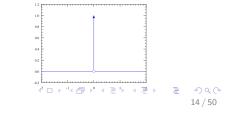
$$f(r) = \int f(r')\delta(r-r')dr', \qquad (12)$$

where the Dirac delta function reads

$$\delta(r-r') \begin{cases} \infty, & r=r'\\ 0, & r\neq r' \end{cases}$$
(13)

and the constraint of normalization is

$$\int_{\infty}^{\infty} \delta(r) dr = 1.$$
 (14)



SPH 1st step: smoothing or kernel approximation

(author?) [8]; (author?) [12] Replace δ with another smoothly weighting function w:

$$f(r) \approx f_k(r) = \int f(r')w(r-r',h)dr', \qquad (15)$$

where kernel w has properties

- smoothness
- compact with h as parameter
- $im_{h\to 0} w(r-r',h) = \delta(r-r')$
- symmetric

6

compact: B-splines, Wendland functions ...

(author?) [15, 16, 19]

Gaussian: $\frac{1}{a\sqrt{\pi}}e^{-r^2/a^2}$

ク へ つ へ で 13 / 50

・ロト ・回ト ・ヨト ・ヨト

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Compact kernel and its normalization

SPH 2nd step: summation or particle approximation

• a cubic function as reads (h = 1 for simplicity)

$$w(r) = \begin{cases} C_D(1-r)^3, & r < 1; \\ 0, & r \ge 1. \end{cases}$$
(16)

If we require the constraint of normalization in two dimension

$$\int_0^{2\pi} \int_0^1 C_2 (1-r)^3 r dr d\theta = 1 \iff C_2 = \frac{10}{\pi}$$
(17)

• a piecewise quintic function reads

$$w(r) = C_D \left\{ egin{array}{ccc} (3-s)^5 - 6(2-s)^5 + 15(1-s)^5, & 0 \leq s < 1\ (3-s)^5 - 6(2-s)^5, & 1 \leq s < 2\ (3-s)^5, & 2 \leq s < 3\ 0, & s \geq 3, \end{array}
ight.$$

where s = 3r/h and $C_2 = 7/(478\pi h^2)$ and $C_3 = 1/(120\pi h^3)$. • $f(r) = f_k(r) + error(h)$

An example: evaluation of density and arbitrary function

 $\forall i \text{ of particle index, mass } m_i, \text{ density } \rho_i, \text{ and } V_i = m_i / \rho_i.$

$$f_{s}(r) = \sum_{i}^{N_{neigh}} f_{i}w(r - r_{i}, h)V_{i} = \sum_{i}^{N_{neigh}} \frac{m_{i}}{\rho_{i}}f_{i}w(r - r_{i}, h).$$
(22)

• What is the density at an arbitrary position r?

$$\rho_s(r) = \sum_{i}^{N_{neigh}} \frac{m_i}{\rho_i} \rho_i w(r - r_i, h) = \sum_{i}^{N_{neigh}} m_i w(r - r_i, h).$$
(23)

• What is the density of a particle at r_j ?

$$\rho_s(r_j) = \sum_i^{N_{neigh}} m_i w(r_j - r_i, h).$$
(24)

• What is the value of a function of a particle at r_j ?

$$f_{s}(r_{j}) = \sum_{i}^{N_{neigh}} f_{i} \frac{m_{i}}{\rho_{i}} w(r_{j} - r_{i}, h) = \sum_{i}^{N_{neigh}} f_{i} W_{ji} = f_{j}$$
(25)

Integral \iff summation

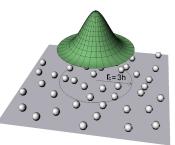
$$f_{k}(r) = \int f(r')w(r-r',h)dr'(19)$$

$$f_{s}(r) = \sum_{i}^{N_{neigh}} f_{i}w(r-r_{i},h)V_{i}, (20)$$

where V_i is a distance, area and volume in 1D, 2D, and 3D, respectively. Therefore,

$$f_k(r) \approx f_s(r)$$

•
$$f_k(r) = f_s(r) + error(\Delta r, h)$$



(21) summation within compact support

Outline

- Background
 hydrodynamic equations
 - hydrodynamic equations
 - numerical methods

2 Mathematics of smoothed particle hydrodynamics

- some facts and basic mathematics
- kernel and particle approximations of a function
- first and second derivatives
- 3 Particles for hydrodynamics
 - continuity and pressure force
 - viscous force
- 4 Classical mechanics for particles ⇒ hydrodynamics
 density estimate
 - equations of motion
- 5 Numerical errors

- 6 Research challenges
- 7 A short excursion to other particle methods

$$\nabla_r f(r) \approx \nabla_r f_k(r) = \nabla_r \int f(r') w(r - r', h) dr'$$
(27)

$$\nabla_r f_k(r) = \int \nabla_r f(r') w(r-r',h) dr' + \int f(r') \nabla_r w(r-r',h) dr' \quad (28)$$

$$\nabla_r f_k(r) = \int f(r') \nabla_r w(r - r', h) dr'$$
(29)

$$\nabla_r f(r) \approx \nabla_r f_k(r) \approx \nabla_r f_s(r) = \sum_{i}^{N_{neigh}} \frac{m_i}{\rho_i} f(r') \nabla_r w(r - r', h) \tag{30}$$

$$\nabla_r \cdot f(r) \approx \nabla_r \cdot f_k(r) \approx \nabla_r \cdot f_s(r) = \sum_{i}^{N_{neigh}} \frac{m_i}{\rho_i} f(r') \cdot \nabla_r w(r - r', h) \quad (31)$$

$$\nabla_r \times f(r) \approx \nabla_r \times f_k(r) \approx \nabla_r \times f_s(r) = \sum_{i}^{N_{neigh}} \frac{m_i}{\rho_i} f(r') \times \nabla_r w(r - r', h)$$
(32)

Second derivatives

Note that we have following identity (author?) [4]

$$\int d\mathbf{r}' \left[f(\mathbf{r}') - f(\mathbf{r}) \right] \frac{\partial w(|\mathbf{r}' - \mathbf{r}|)}{\partial r'} \frac{1}{r_{ij}} \mathbf{e}_{ij} \left[5 \frac{(\mathbf{r}' - \mathbf{r})^{\alpha} (\mathbf{r}' - \mathbf{r})^{\beta}}{(\mathbf{r}' - \mathbf{r})^{2}} - \delta^{\alpha\beta} \right]$$
$$= \nabla^{\alpha} \nabla^{\beta} f(\mathbf{r}) + \mathcal{O}(\nabla^{4} f h^{2}).$$
(33)

Therefore,

$$\frac{1}{\rho_i} \left(\nabla^2 \mathbf{v} \right) = -2 \sum_{j}^{N_{neigh}} \frac{m_j}{\rho_i \rho_j} \frac{\partial w_{ij}}{\partial r} \mathbf{v}_{ij}$$
(34)

$$\frac{1}{\rho_i} \left(\nabla \nabla \cdot \mathbf{v} \right) = -\sum_{j}^{N_{neigh}} \frac{m_j}{\rho_i \rho_j} \frac{\partial w_{ij}}{\partial r} \left(5 \mathbf{e}_{ij} \cdot \mathbf{v}_{ij} \mathbf{e}_{ij} - \mathbf{v}_{ij} \right)$$
(35)

Outline

- Background
 - hydrodynamic equations
 - numerical methods
- 2 Mathematics of smoothed particle hydrodynamics
 - some facts and basic mathematics
 - kernel and particle approximations of a functionfirst and second derivatives

Operation of the second sec

- continuity and pressure force
- viscous force
- ④ Classical mechanics for particles ⇒ hydrodynamics
 density estimate
 - equations of motion
- 5 Numerical errors
- 6 Research challenges
- A short excursion to other particle methods

(36)

1 Background

hydrodynamic equationsnumerical methods

• first and second derivatives

• continuity and pressure force

3 Particles for hydrodynamics

• viscous force

• density estimate

Numerical errors

• equations of motion

• some facts and basic mathematics

Mathematics of smoothed particle hydrodynamics

• kernel and particle approximations of a function

Particles for hydrodynamics

• continuity equation is accounted for by

$$\rho_i = \sum_j^{N_{neigh}} m_j W_{ij}, \quad \dot{\mathbf{r}}_i = \mathbf{v}_i$$
(37)

 \bullet pressure force: $-\nabla \mathbf{p}/\rho$

$$\mathbf{F}_{i}^{C} = \sum_{j}^{N_{neigh}} \mathbf{F}_{ij}^{C} = \sum_{j}^{N_{neigh}} - m_{j} \left(\frac{p_{j}}{\rho_{j}^{2}}\right) \frac{\partial w}{\partial r_{ij}} \mathbf{e}_{ij},$$
(38)

• bad: not antisymmetric by swapping *i* and *j*

• recognize
$$-\nabla p/\rho = -\frac{p}{\rho^2}\nabla \rho - \nabla \frac{p}{\rho}$$

$$\mathbf{F}_{ij}^{C} = -m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \frac{\partial w}{\partial r_{ij}} \mathbf{e}_{ij}, \qquad (39)$$

26 / 50

Outline

- Background
 - hydrodynamic equations
 - numerical methods
- 2 Mathematics of smoothed particle hydrodynamics

A short excursion to other particle methods

- some facts and basic mathematics
- kernel and particle approximations of a function
- first and second derivatives

3 Particles for hydrodynamics

- continuity and pressure force
- viscous force
- igside Classical mechanics for particles \Rightarrow hydrodynamics
 - density estimate
 - equations of motion
- Numerical errors
- Research challenges
- A short excursion to other particle methods

viscous force

In general

$$\mathbf{F}_{ij}^{D} = \frac{m_{j}}{\rho_{i}\rho_{j}r_{ij}}\frac{\partial w}{\partial r_{ij}}\left[\left(\frac{5\eta}{3}-\zeta\right)\mathbf{v}_{ij}+\left(5\zeta+\frac{5\eta}{3}\right)\mathbf{e}_{ij}\cdot\mathbf{v}_{ij}\mathbf{e}_{ij}\right]$$
(40)

For inompression flows $\nabla\cdot {\bf v}={\bf 0},$ therefore,

$$\sum_{j}^{N} \frac{5}{\rho_{i}\rho_{j}r_{ij}} \frac{\partial w_{ij}}{r_{ij}} \mathbf{e}_{ij} \cdot \mathbf{v}_{ij} \mathbf{e}_{ij} \approx \sum_{j}^{N} \frac{1}{\rho_{i}\rho_{j}r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \mathbf{e}_{ij}.$$
 (41)

$$\mathbf{F}_{ij}^{D} = 2\eta \frac{m_j}{\rho_i \rho_j r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \mathbf{v}_{ij} \approx 10\eta \frac{m_j}{\rho_i \rho_j r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \mathbf{e}_{ij} \cdot \mathbf{v}_{ij} \mathbf{e}_{ij}.$$
(42)

Either choice is fine, but they are different.

୬ ୯ ୯ 25 / 50

• continuity equation:

$$\rho_i = \sum_{i}^{N_{neigh}} m_j W_{ij}, \quad \dot{\mathbf{r}}_i = \mathbf{v}_i$$
(43)

• momentum equations: (author?) [4, 11]

$$\dot{\mathbf{v}}_{i} = \sum_{j \neq i}^{N_{neigh}} \left(\mathbf{F}_{ij}^{C} + \mathbf{F}_{ij}^{D} \right), \tag{44}$$

$$\mathbf{F}_{ij}^{C} = -m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} \right) \frac{\partial w}{\partial r_{ij}} \mathbf{e}_{ij}, \qquad (45)$$

$$\mathbf{F}_{ij}^{D} = \frac{m_{j}}{\rho_{i}\rho_{j}r_{ij}}\frac{\partial w}{\partial r_{ij}}\left[\left(\frac{5\eta}{3}-\zeta\right)\mathbf{v}_{ij}+\left(5\zeta+\frac{5\eta}{3}\right)\mathbf{e}_{ij}\cdot\mathbf{v}_{ij}\mathbf{e}_{ij}\right] (46)$$

• weakly compressible: (author?) [2, 13]

$$p = c_T^2 \rho, \quad or \quad p = p_0 \left[\left(\frac{\rho}{\rho_r} \right)^{\gamma} - 1 \right]$$
 (47)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

・ロト ・回ト ・ヨト ・ヨト

29 / 50

200

31 / 50

 p_0 relates to an artificial sound speed $c_{\mathcal{T}}$

Outline

 Background hydrodynamic equations • numerical methods Mathematics of smoothed particle hydrodynamics • some facts and basic mathematics • kernel and particle approximations of a function • first and second derivatives • continuity and pressure force • viscous force 4 Classical mechanics for particles \Rightarrow hydrodynamics • density estimate • equations of motion 5 Numerical errors 6 Research challenges A short excursion to other particle methods ・ロト ・ 同ト ・ ヨト ・ ヨト 30 / 50

Outline

- 1 Background
 - hydrodynamic equations
 - numerical methods
- 2 Mathematics of smoothed particle hydrodynamics
 - some facts and basic mathematics
 - kernel and particle approximations of a function
 - first and second derivatives
- Particles for hydrodynamics
 - continuity and pressure force
 - viscous force

4 Classical mechanics for particles \Rightarrow hydrodynamics

- density estimate
- equations of motion
- 5 Numerical errors
- 6 Research challenges
- A short excursion to other particle methods

Density estimate or sampling

Given a set of point particles with mass m_i , what is the density estimate for a position at r.

$$\rho_{s}(\mathbf{r}) = \sum_{i}^{N_{neigh}} m_{i} w(\mathbf{r} - \mathbf{r}_{i}, h).$$
(48)

where kernel w has properties

- smoothness
- 2 compact with h as parameter

$$\bigcirc \int w(r-r',h)dr'=1$$

- symmetric
- 5

Eq. (48) is more fundamental than the summation form presented early

$$f_{s}(\mathbf{r}) = \sum_{i}^{N_{neigh}} f_{i} \frac{m_{i}}{\rho_{i}} w(\mathbf{r} - \mathbf{r}_{i}, h).$$
(49)

Background hydrodynamic equations numerical methods Mathematics of smoothed particle hydrodynamics some facts and basic mathematics kernel and particle approximations of a function first and second derivatives

- Particles for hydrodynamics
 - continuity and pressure force
 - viscous force

4 Classical mechanics for particles \Rightarrow hydrodynamics

- density estimate
- equations of motion
- 5 Numerical errors
- 6 Research challenges
- 7 A short excursion to other particle methods

Euler-Lagrangian equations

$$\delta S = \int \left(\frac{\partial L}{\partial \mathbf{v}} \cdot \delta \mathbf{v} + \frac{\partial L}{\partial \mathbf{r}} \cdot \delta \mathbf{r} \right) = 0$$
(54)

イロト イロト イヨト イヨト 一日

うくで 33 / 50

consider $\delta \mathbf{v} = d(\delta \mathbf{r})/dt$ and $d/dt = \partial/\partial t + \mathbf{v} \cdot \nabla$

₩

$$\delta S = \int \left\{ \left[-\frac{d}{dt} \left(\frac{\partial L}{\partial \mathbf{v}} \right) + \frac{\partial L}{\partial \mathbf{r}} \right] \cdot \delta \mathbf{r} \right\} dt + \left[\frac{\partial L}{\partial \mathbf{v}} \cdot \delta \mathbf{r} \right]_{t_0}^t = 0 \quad (55)$$

assume variation vanishes at start and end times and furthermore, $\delta \mathbf{r}$ is arbitrary. Therefore, we have the Euler-Lagrangian equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \mathbf{v}_i}\right) - \frac{\partial L}{\partial \mathbf{r}_i} = 0.$$
(56)

Least action

Define the Lagrangian L as

$$L = T - U, \tag{50}$$

where T and U are kinetic and potential energies, respectively. For a set of particles

$$L = \sum_{i}^{N} m_i \left(\frac{1}{2} v_i^2 + u_i(\rho_i, s) \right)$$
(51)

Define the action as

$$S = \int L dt.$$
 (52)

Minimizing S such that $\delta S = \int \delta L dt = 0$, where δ is a variation with respect to particle coordinate $\delta \mathbf{r}$. We have **(author?)** [17]

$$\delta S = \int \left(\frac{\partial L}{\partial \mathbf{v}} \cdot \delta \mathbf{v} + \frac{\partial L}{\partial \mathbf{r}} \cdot \delta \mathbf{r} \right) = 0$$
 (53)

Equation of motions for particles

From the Lagrangian $L = \sum_{i}^{N} m_i \left(\frac{1}{2}v_i^2 + u_i\right)$ we know

$$\frac{\partial L}{\partial \mathbf{v}_i} = m_i \mathbf{v}_i, \quad \frac{\partial L}{\partial \mathbf{r}_i} = -\sum_j^{N_{neigh}} m_j \frac{\partial u_j}{\partial \rho_j} \frac{\partial \rho_j}{\partial \mathbf{r}_j}$$
(57)

Some basic thermodynamics: dU = TdS - PdVSince $V = m/\rho$, so $dV = -md\rho/\rho^2$. For per unit mass we have

$$du = Tds - \frac{P}{\rho^2}d\rho.$$
(58)

For a reversible process ds = 0, therefore $\partial u_i / \partial \rho_i = p / \rho^2$. Put everything known into the Euler-Lagrangian equations, we get

$$\dot{\mathbf{v}}_{i} = \sum_{j \neq i}^{N_{neigh}} - m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} \right) \frac{\partial w}{\partial r_{ij}} \mathbf{e}_{ij}.$$
(59)

✓) Q (↓ 36 / 50

Conservation laws

Euler hydrodynamics

- total mass $M = \sum_{i}^{N} m_{i}$.
- total linear momentum

$$\frac{d}{dt}\sum_{i}^{N}m_{i}\mathbf{v}_{i}=\sum_{i}^{N}m_{i}\frac{d\mathbf{v}_{i}}{dt}=\sum_{i}^{N}\sum_{j}^{N}-m_{i}m_{j}\left(\frac{p_{i}}{\rho_{i}^{2}}+\frac{p_{j}}{\rho_{j}^{2}}\right)\frac{\partial w}{\partial r_{ij}}\mathbf{e}_{ij}=0.$$
(60)

• total angular momentum

$$\frac{d}{dt}\sum_{i}^{N}\mathbf{r}_{i}\times m_{i}\mathbf{v}_{i}=\sum_{i}^{N}m_{i}\left(\mathbf{r}_{i}\times\frac{d\mathbf{v}_{i}}{dt}\right)$$
(61)

$$= \sum_{i}^{N} \sum_{j}^{N} -m_{i}m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}}\right) \frac{\partial w}{\partial r_{ij}} (\mathbf{r}_{i} \times \mathbf{e}_{ij}) = 0.$$
 (62)

Similarly for the viscous forces.

Errors in density estimate: kernel error

Recall the kernel approximation

$$\rho_k(\mathbf{r}) = \int \rho(\mathbf{r}') w(\mathbf{r} - \mathbf{r}', h) d\mathbf{r}', \qquad (63)$$

Expanding $\rho(r')$ by Taylor series around **r**

$$\rho_{k}(\mathbf{r}) = \rho(\mathbf{r}) \int w(\mathbf{r} - \mathbf{r}', h) d\mathbf{r}' + \nabla \rho(\mathbf{r}) \cdot \int (\mathbf{r}' - \mathbf{r}) w(\mathbf{r} - \mathbf{r}', h) d\mathbf{r}' + \nabla^{\alpha} \nabla^{\beta} \rho(\mathbf{r}) \int \delta \mathbf{r}'^{\alpha} \delta \mathbf{r}^{\beta} w(\mathbf{r} - \mathbf{r}', h) d\mathbf{r}' + O(h^{3}).$$
(64)

Recall $\int w(\mathbf{r} - \mathbf{r}', h) d\mathbf{r}' = 1$ and odd terms vanish due to symmetric w,

$$\rho(\mathbf{r}) = \rho_k(\mathbf{r}) + O(h^2). \tag{65}$$

Outline

		 Background hydrodynamic equations
$m_j \left(rac{p_i}{ ho_i^2} + rac{p_j}{ ho_j^2} ight) rac{\partial w}{\partial r_{ij}} \mathbf{e}_{ij}$	_j = 0.	 numerical methods Mathematics of smoothed particle hydrodynamics some facts and basic mathematics kernel and particle approximations of a function first and second derivatives
	(60)	 Particles for hydrodynamics continuity and pressure force viscous force
$\left(\mathbf{r}_{i}\times\frac{d\mathbf{v}_{i}}{dt}\right)$	(61)	 ④ Classical mechanics for particles ⇒ hydrodynamics ● density estimate
$\frac{\partial w}{\partial r_{ij}}\left(\mathbf{r}_{i}\times\mathbf{e}_{ij}\right)=0.$	(62)	 equations of motion Numerical errors Research challenges
《曰》《聞》《臣》《臣》	≣ ∽ 37/50	A short excursion to other particle methods A short excursion to other particle A short excursiont to

Errors for a function f: kernel error and summation error

Similarly as for density estimate:

$$f(\mathbf{r}) = f_k(\mathbf{r}) + O(h^2). \tag{66}$$

$$f_k(\mathbf{r}_i) \approx f_s(\mathbf{r}_i) = \sum_j^{N_{neigh}} \frac{m_j}{\rho_j} f_j w(\mathbf{r}_i - \mathbf{r}_j, h).$$
(67)

Let us do Taylor series on
$$f(\mathbf{r}_j)$$
 around \mathbf{r}_i
 $f_s(\mathbf{r}_i) = f_i \sum_j^{N_{neigh}} \frac{m_j}{\rho_j} w(\mathbf{r}_{ij}, h) + \nabla f_i \cdot \sum_j^{N_{neigh}} \mathbf{r}_{ji} \frac{m_j}{\rho_j} w(\mathbf{r}_{ij}, h) + O(h^2).$ (68)

To have error of $O(h^2)$, we need

$$\sum_{j}^{N} \frac{m_{j}}{\rho_{i}} w(\mathbf{r}_{ij}) = 1, \quad \sum_{j}^{N} \mathbf{r}_{ji} \frac{m_{j}}{\rho_{i}} w(\mathbf{r}_{ij}) = 0, \tag{69}$$

Challenges

- 1 Background
 - hydrodynamic equations
 - numerical methods
- 2 Mathematics of smoothed particle hydrodynamics
 - some facts and basic mathematics
 - kernel and particle approximations of a function
 - first and second derivatives
- Particles for hydrodynamics
 - continuity and pressure force
 - viscous force
- 4) Classical mechanics for particles \Rightarrow hydrodynamics
 - density estimate
- equations of motion
- 5 Numerical errors

6 Research challenges

7 A short excursion to other particle methods

- error analysis due to particle configurations
- consistency and conservation at the same time
- convergence for a practical purpose
- coarse-graining from molecular dynamics

<ロト < □ ト < □ ト < 直 ト < 直 ト < 直 ト < 直 へ Q () 42 / 50

Outline

- Background
 - hydrodynamic equations
 - numerical methods
- 2 Mathematics of smoothed particle hydrodynamics
 - some facts and basic mathematics
 - kernel and particle approximations of a function
 - first and second derivatives
- Particles for hydrodynamics
 - continuity and pressure force
 - viscous force
- 4 Classical mechanics for particles \Rightarrow hydrodynamics
 - density estimate
 - equations of motion
- 5 Numerical errors
- Research challenges
- A short excursion to other particle methods

Algorithmic similarity: pairwise forces within short range r_c

• in a nutshell, \forall particle *i* in **SPH**, **SDPD**, **DPD**, or **MD**, the EoM:

$$\dot{\mathbf{v}}_{i} = \sum_{j \neq i} \left(\mathbf{F}_{ij}^{C} + \mathbf{F}_{ij}^{D} + \mathbf{F}_{ij}^{R} \right)$$
(70)

- options for different components
 - weighting kernel or potential gradient in MD
 - equation of state
 - density field
 - thermal fluctuations
 - canonical ensemble / NVT: thermostat
 -

```
SPH: (author?) [14]
```

SDPD: (author?) [4]

DPD: (author?) [10]; (author?) [5]; (author?) [9]

 $\mathsf{MD:} \ \textbf{(author?)} \ [1]; \ \textbf{(author?)} \ [7]; \ \textbf{(author?)} \ [6]; \ \textbf{(author?)} \ [18]$

<ロ> (四) (四) (三) (三) (三)

- 24

• \sim 12,000 SDPD particles (author?) [3]

- \sim 12,000 SDPD particles (author?) [3]
- hypnotized?

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

References I

- References II
- [1] M. P. Allen and D. J. Tildesley. *Computer simulation of liquids*. Clarendon Press, Oxford, Oct. 1989.
- [2] G. K. Batchelor. *An introduction to fluid dynamics*. Cambridge University Press, Cambridge, 1967.
- [3] X. Bian, S. Litvinov, R. Qian, M. Ellero, and N. A. Adams. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. *Phys. Fluids*, 24(1), 2012.
- [4] P. Español and M. Revenga. Smoothed dissipative particle dynamics. *Phys. Rev. E*, 67(2):026705, 2003.
- [5] P. Español and P. Warren. Statistical mechanics of dissipative particle dynamics. *Europhys. Lett.*, 30(4):191–196, May 1995.
- [6] D. J. Evans and G. Morriss. *Statistical Mechanics of nonequilibrium liquids*. Cambridge University Press, second edition, 2008.

- [7] D. Frenkel and B. Smit. Understanding molecular simulation: from algorithms to Applications. Academic Press, a division of Harcourt, Inc., 2002.
- [8] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical stars. *Mon. Not. R. Astron. Soc.*, 181:375–389, 1977.
- [9] R. D. Groot and P. B. Warren. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys., 107(11):4423-4435, 1997.
- [10] P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating microsopic hydrodynamics phenomena with dissipative particle dynamics. *Europhys. Lett.*, 19(3):155–160, 1992.
- [11] X. Y. Hu and N. A. Adams. A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys., 213(2):844–861, 2006.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

References III

References IV

- [12] L. B. Lucy. A numerical approach to the testing of the fission hypothesis. Astron. J., 82:1013–1024, 1977.
- [13] J. J. Monaghan. Simulating free surface flows with SPH. J. Comput. Phys., 110:399–406, 1994.
- [14] J. J. Monaghan. Smoothed particle hydrodynamics. *Rep. Prog. Phys.*, 68(8):1703 – 1759, 2005.
- [15] J. J. Monaghan and J. C. Lattanzio. A refined particle method for astrophysical problems. *Astron. Astrophys.*, 149:135–143, 1985.
- [16] J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys., 136(1):214 – 226, 1997.
- [17] D. J. Price. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys., 231:759 – 794, FEB 1 2012.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 49 / 50

- [18] Mark E. Tuckerman. *statistical mechanics: theory and molecular simulation*. Oxford University Press, 2010.
- [19] Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4(1):389–396, 1995.

▲□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶