PROOF OF AN INVERSE INEQUALITY FOR POLYNOMIALS

HANDY ZHANG

Denote all polynomials of order less than or equal to N by \mathbb{P}_{N} over the interval $[-1,1]$.
Proposition. For all $v \in \mathbb{P}_{N}$ with $v(1)=0$, there exists a constant C independent of N such that

$$
\begin{equation*}
\int_{-1}^{1}(1+x) v_{x}^{2} d x \leq C N^{2} \int_{-1}^{1} v^{2} d x \tag{0.1}
\end{equation*}
$$

Proof. Note that $v=\sum_{n=0}^{N-1} a_{n}\left(L_{n}-L_{n+1}\right)$ and $v(1)=0$ since $L_{n}(1)=L_{n+1}=1$.

$$
\begin{aligned}
\int_{-1}^{1} v^{2} d x & =\int_{-1}^{1}\left[\sum_{n=0}^{N-1} a_{n}\left(L_{n}-L_{n+1}\right)\right]^{2} d x \\
& =\int_{-1}^{1}\left[a_{0} L_{0}+\sum_{n=1}^{N-1}\left(a_{n}-a_{n-1}\right) L_{n}-a_{N-1} L_{N}\right]^{2} d x \\
& =2 a_{0}^{2}+\sum_{n=0}^{N-1}\left(a_{n}-a_{n-1}\right)^{2} \frac{2}{2 n+1}+a_{N-1}^{2} \frac{2}{2 N+1} .
\end{aligned}
$$

Noting that

$$
\begin{equation*}
-(1+x)\left(L_{n}-L_{n+1}\right)_{x}=(n+1)\left(L_{n}+L_{n+1}\right), \tag{0.2}
\end{equation*}
$$

we have

$$
\begin{aligned}
\int_{-1}^{1}(1+x) v_{x}^{2} d x & =\int_{-1}^{1}(1+x)\left[\sum_{n=0}^{N-1} a_{n}\left(L_{n}-L_{n+1}\right)_{x}\right]\left[\sum_{n=0}^{N-1} a_{n}\left(L_{n}-L_{n+1}\right)_{x}\right] d x \\
& =\int_{-1}^{1}\left[\sum_{n=0}^{N-1}-(n+1) a_{n}\left(L_{n}+L_{n+1}\right)\right]\left[\sum_{n=0}^{N-1} a_{n}\left(L_{n}-L_{n+1}\right)_{x}\right] d x \\
& =\int_{-1}^{1}\left[\sum_{m, n=0}^{N-1}-(n+1) a_{m} a_{n}\left(L_{n}+L_{n+1}\right)\left(L_{m}-L_{m+1}\right)_{x} d x\right. \\
& =-\sum_{m, n=0}^{N-1}(n+1) a_{m} a_{n} \int_{-1}^{1}\left(L_{n}+L_{n+1}\right)\left(L_{m}-L_{m+1}\right)_{x} d x \\
& =2 \sum_{n=0}^{N-1} a_{n}^{2}(n+1),
\end{aligned}
$$

where we used the fact that

$$
\int_{-1}^{1}\left(L_{n}+L_{n+1}\right)\left(L_{m}-L_{m+1}\right)_{x} d x=-2 \delta_{m, n} .
$$

Hence

$$
\frac{\int_{-1}^{1} v^{2} d x}{\int_{-1}^{1}(1+x) v_{x}^{2} d x} \geq \frac{a_{N-1}^{2} \frac{2}{2 N+1}}{\sum_{n=0}^{N-1} a_{n}^{2}(n+1)} \geq \frac{a_{N-1}^{2} \frac{2}{2 N+1}}{\sum_{n=0}^{N-1} a_{n}^{2} N}=O\left(N^{-2}\right) .
$$

It remains to verify that (0.2). Recall that

$$
\begin{equation*}
(2 n+1) x L_{n}=n L_{n-1}+(n+1) L_{n+1} \tag{0.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 n+1) L_{n}=\left(L_{n+1}-L_{n-1}\right)_{x} . \tag{0.4}
\end{equation*}
$$

Taking derivative with respect to x in (0.3) leads to

$$
\begin{equation*}
(2 n+1) x\left(L_{n}\right)_{x}+(2 n+1) L_{n}=n\left(L_{n-1}\right)_{x}+(n+1)\left(L_{n+1}\right)_{x} . \tag{0.5}
\end{equation*}
$$

Rewrite (0.5) as, by (0.4),

$$
\begin{aligned}
(2 n+1) x\left(L_{n}\right)_{x}+(2 n+1) L_{n} & =(2 n+1)\left(L_{n-1}\right)_{x}+(n+1)\left[\left(L_{n+1}-L_{n-1}\right)\right]_{x} \\
& =(2 n+1)\left(L_{n-1}\right)_{x}+(2 n+1)(n+1) L_{n},
\end{aligned}
$$

and thus simplifying gives

$$
\begin{equation*}
x\left(L_{n}\right)_{x}=\left(L_{n-1}\right)_{x}+n L_{n} . \tag{0.6}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
x\left(L_{n}\right)_{x}=\left(L_{n+1}\right)_{x}-(n+1) L_{n} \tag{0.7}
\end{equation*}
$$

By (0.6) and (0.7), we have (0.2).

