
Parallel Jacobi Algorithm

Steven Dong

Applied Mathematics



Overview

 Parallel Jacobi Algorithm

 Different data distribution schemes

• Row-wise distribution

• Column-wise distribution

• Cyclic shifting

• Global reduction

 Domain decomposition for solving Laplacian equations 

 Related MPI functions for parallel Jacobi algorithm 

and your project.



Linear Equation Solvers

 Direct solvers
 Gauss elimination

 LU decomposition

 Iterative solvers
 Basic iterative solvers

• Jacobi

• Gauss-Seidel

• Successive over-relaxation

 Krylov subspace methods

• Generalized minimum residual (GMRES)

• Conjugate gradient



Sequential Jacobi Algorithm

D is diagonal matrix

L is lower triangular matrix

U is upper triangular matrix

bAx 

ULDA 

))((11 kk xULbDx  



Parallel Jacobi Algorithm: Ideas

 Shared memory or distributed memory:

 Shared-memory parallelization very straightforward

 Consider distributed memory machine using MPI

 Questions to answer in parallelization:

 Identify concurrency

 Data distribution (data locality)

• How to distribute coefficient matrix among CPUs?

• How to distribute vector of unknowns?

• How to distribute RHS?

 Communication: What data needs to be communicated?

 Want to:

 Achieve data locality

 Minimize the number of communications

 Overlap communications with computations

 Load balance



Row-wise Distribution

 Assume dimension of matrix can be divided by number of CPUs

 Blocks of m rows of coefficient matrix distributed to different 

CPUs;

 Vector of unknowns and RHS distributed similarly 

=

A x b

m

m

…

n

A: n x n

m = n/P

P is number of CPUs



Data to be Communicated

 Already have all columns of matrix A on each CPU;

 Only part of vector x is available on a CPU; Cannot carry out 

matrix vector multiplication directly;

 Need to communicate the vector x in the computations.

=

A x b

m

m

…

n

))((11 kk xULbDx  

Cpu 0

Cpu 1



How to Communicate Vector X?

 Gather partial vector x on each CPU to form the 
whole vector; Then matrix-vector multiplication on 
different CPUs proceed independently. (textbook)

 Need MPI_Allgather() function call;

 Simple to implement, but
 A lot of communications

 Does not scale well for a large number of processors.

R E D

R E D R E D R E D



How to Communicate X?

 Another method: Cyclic shift

 Shift partial vector x upward at each step; 

 Do partial matrix-vector multiplication on each CPU at each 

step;

 After P steps (P is the number of CPUs), the overall matrix-

vector multiplication is complete.

 Each CPU needs only to communicate with 

neighboring CPUs

 Provides opportunities to overlap communication with 

computations

 Detailed illustration …



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x1

x2

x3

x4

a11*x1 + a12*x2 + a13*x3 + a14*x4

a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4

a41*x1 + a42*x2 + a43*x3 + a44*x4

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x2

x3

x4

x1

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x3

x4

x1

x2

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x4

x1

x2

x3

a11*x1 + a12*x2 + a13*x3 + a14*x4

a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4

a41*x1 + a42*x2 + a43*x3 + a44*x4

a11*x1 + a12*x2 + a13*x3 + a14*x4

a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4

a41*x1 + a42*x2 + a43*x3 + a44*x4

a11*x1 + a12*x2 + a13*x3 + a14*x4

a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4

a41*x1 + a42*x2 + a43*x3 + a44*x4

(1) (2)

(3) (4)

Cpu 0

Cpu 1

Cpu 2

Cpu 3



Overlap Communications with 

Computations

 Communications:
 Each CPU needs to send its own partial vector x to upper 

neighboring CPU;

 Each CPU needs to receive data from lower neighboring 
CPU

 Overlap communications with computations: Each 
CPU does the following:
 Post non-blocking requests to send data to upper neighbor 

to to receive data from lower neighbor; This returns 
immediately

 Do partial computation with data currently available;

 Check non-blocking communication status; wait if necessary;

 Repeat above steps



Stopping Criterion

 Computing norm requires information of the whole 

vector;

 Need a global reduction (SUM) to compute the norm 

using MPI_Allreduce or MPI_Reduce.

1k kx x b    
i

ii BABA 2)(




Column-wise Distribution

 Blocks of m columns of coefficient matrix A are 

distributed to different CPUs;

 Blocks of m rows of vector x and b are distributed to 

different CPUs;

m m …

n

A x

=

b
))((11 kk xULbDx  



Data to be Communicated

 Already have coefficient matrix data of m columns, 
and a block of m rows of vector x;

 So a partial A*x can be computed on each CPU 
independently.

 Need communication to get whole A*x;

m m …

n

A x

=

b



How to Communicate

 After getting partial A*x, can do global reduction 
(SUM) using MPI_Allreduce to get the whole A*x. So 
a new vector x can be calculated.

 Another method: Cyclic shift
 Shift coefficient matrix left-ward and vector of unknowns 

upward at each step;

 Do a partial matrix-vector multiplication, and subtract it from 
the RHS;

 After P steps (P is number of CPUs), matrix-vector 
multiplication is completed and subtracted from RHS; Can 
compute new vector x.

 Detailed illustration …



b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4

b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4

b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4

b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

(1) (2)

(3) (4)

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4

b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4

b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4

b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4

b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4

b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4

b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4

b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4

b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4

b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

a13 a14 a11 a12

a23 a24 a21 a22

a33 a34 a31 a32

a43 a44 a41 a42

x3

x4

x1

x2

=

b1

b2

b3

b4

a14 a11 a12 a13

a24 a21 a22 a23

a34 a31 a32 a33

a44 a41 a42 a43

x4

x1

x2

x3

=

b1

b2

b3

b4

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x1

x2

x3

x4

=

b1

b2

b3

b4

a12 a13 a14 a11

a22 a23 a24 a21

a32 a33 a34 a31

a42 a43 a44 a41

x2

x3

x4

x1

=

b1

b2

b3

b4



Solving Diffusion Equation

 How do we solve it in parallel in practice?

 Need to do domain decomposition.

02  qf

)(
4

1 2

1111 ijijijjijiij qxfffff  



Domain Decomposition

 Column-wise decomposition

 Boundary points depend on 

data from neighboring CPU

 During each iteration, need 

send own boundary data to 

neighbors, and receive 

boundary data from neighboring 

CPUs.

 Interior points depend only on 

data residing on the same 

CPU (local data).
x

y

cpu 0 cpu 1 …



Overlap Communication with 

Computations

 Compute boundary points and interior points at 

different stages;

 Specifically:

 At the beginning of an iteration, post non-blocking send to 

and receive from requests for communicating boundary data 

with neighboring CPUs;

 Update values on interior points;

 Check communication status (should complete by this point), 

wait if necessary;

 Boundary data received, update boundary points;

 Begin next iteration, repeat above steps.



Other Domain Decompositions

2D decomposition1D decomposition



Related MPI Functions for Parallel 

Jacobi Algorithm

MPI_Allgather()

MPI_Isend()

MPI_Irecv()

MPI_Reduce()

MPI_Allreduce()



MPI Programming Related to Your 

Project

 Parallel Jacobi Algorithm

 Compiling MPI programs

 Running MPI programs

Machines: www.cascv.brown.edu


