Parallel Jacobi Algorithm

Steven Dong Applied Mathematics

Overview

Parallel Jacobi Algorithm

Different data distribution schemes

- Row-wise distribution
- Column-wise distribution
- Cyclic shifting
- Global reduction

Domain decomposition for solving Laplacian equations

Related MPI functions for parallel Jacobi algorithm and your project.

Linear Equation Solvers

Direct solvers

- ✤ Gauss elimination
- LU decomposition

□ Iterative solvers

- Basic iterative solvers
 - Jacobi
 - Gauss-Seidel
 - Successive over-relaxation
- Krylov subspace methods
 - Generalized minimum residual (GMRES)
 - Conjugate gradient

Sequential Jacobi Algorithm

$$Ax = b$$
$$A = D + L + U$$

D is diagonal matrix L is lower triangular matrix U is upper triangular matrix

$$x^{k+1} = D^{-1}(b - (L+U)x^k)$$

Parallel Jacobi Algorithm: Ideas

□ Shared memory or distributed memory:

- Shared-memory parallelization very straightforward
- Consider distributed memory machine using MPI
- **Questions to answer in parallelization:**
 - Identify concurrency
 - Data distribution (data locality)
 - How to distribute coefficient matrix among CPUs?
 - How to distribute vector of unknowns?
 - How to distribute RHS?
 - Communication: What data needs to be communicated?

Want to:

- ✤ Achieve data locality
- Minimize the number of communications
- Overlap communications with computations
- Load balance

Row-wise Distribution

A: n x n m = n/P P is number of CPUs

- Assume dimension of matrix can be divided by number of CPUs
- Blocks of m rows of coefficient matrix distributed to different CPUs;
- □ Vector of unknowns and RHS distributed similarly

Data to be Communicated

- □ Already have all columns of matrix A on each CPU;
- Only part of vector x is available on a CPU; Cannot carry out matrix vector multiplication directly;
- □ Need to communicate the vector x in the computations.

How to Communicate Vector X?

Gather partial vector x on each CPU to form the whole vector; Then matrix-vector multiplication on different CPUs proceed independently. (textbook)

- □ Need MPI_Allgather() function call;
- □ Simple to implement, but
 - A lot of communications
 - Does not scale well for a large number of processors.

How to Communicate X?

□ Another method: Cyclic shift

- Shift partial vector x upward at each step;
- Do partial matrix-vector multiplication on each CPU at each step;
- After P steps (P is the number of CPUs), the overall matrixvector multiplication is complete.
- Each CPU needs only to communicate with neighboring CPUs
 - Provides opportunities to overlap communication with computations
- Detailed illustration ...

a11	a12	a13	a14	x2	
a21	a22	a23	a24	x3	2
a31	a32 a	a33	a34	x4	
a41	a42	a43	a44	x1	

a11*x1 + a12*x2 + a13*x3 + a14*x4 a21*x1 + a22*x2 + a23*x3 + a24*x4 a31*x1 + a32*x2 + a33*x3 + a34*x4a41*x1 + a42*x2 + a43*x3 + a44*x4

a11	a12	a13	a14	x4	
a21	a22	a23	a24	x1	
a31	a32	a33	a34	x2	
a41	a42	a43	a44	x3	

a11*x1 + a12*x2 + a13*x3 + a14*x4 a21*x1 + a22*x2 + a23*x3 + a24*x4 a31*x1 + a32*x2 + a33*x3 + a34*x4a41*x1 + a42*x2 + a43*x3 + a44*x4

(2)

(4)

-				
	x 1	a14	a13	2
Ĺ	x2	a24	a23	2
	x3	a34	a33	2
	x4	a44	a43	2
-				

a11*x1 + a12*x2 + a13*x3 + a14*x4 a21*x1 + a22*x2 + a23*x3 + a24*x4 a31*x1 + a32*x2 + a33*x3 + a34*x4 a41*x1 + a42*x2 + a43*x3 + a44*x4

(1)

(3)

a11

a21

a31

a41

a1

a2

a3

¦ a4

Overlap Communications with Computations

Communications:

- Each CPU needs to send its own partial vector x to upper neighboring CPU;
- Each CPU needs to receive data from lower neighboring CPU
- Overlap communications with computations: Each CPU does the following:
 - Post non-blocking requests to send data to upper neighbor to to receive data from lower neighbor; This returns immediately
 - Do partial computation with data currently available;
 - Check non-blocking communication status; wait if necessary;
 - Repeat above steps

Stopping Criterion

$$\|x^{k+1} - x^k\| < \varepsilon \|b\|$$
 $\|\vec{A} - \vec{B}\| = \sqrt{\sum_i (A_i - B_i)^2}$

- Computing norm requires information of the whole vector;
- Need a global reduction (SUM) to compute the norm using MPI_Allreduce or MPI_Reduce.

Column-wise Distribution

- Blocks of m columns of coefficient matrix A are distributed to different CPUs;
- Blocks of m rows of vector x and b are distributed to different CPUs;

Data to be Communicated

- Already have coefficient matrix data of m columns, and a block of m rows of vector x;
- So a partial A*x can be computed on each CPU independently.
- □ Need communication to get whole A*x;

How to Communicate

After getting partial A*x, can do global reduction (SUM) using MPI_Allreduce to get the whole A*x. So a new vector x can be calculated.

□ Another method: Cyclic shift

- Shift coefficient matrix left-ward and vector of unknowns upward at each step;
- Do a partial matrix-vector multiplication, and subtract it from the RHS;
- After P steps (P is number of CPUs), matrix-vector multiplication is completed and subtracted from RHS; Can compute new vector x.
- Detailed illustration ...

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4 b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4 b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4 b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4 b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4 b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4 b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4 b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4 b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4 b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4 b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4 b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4 b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

Solving Diffusion Equation

$$\nabla^2 f + q = 0$$

$$f_{ij} = \frac{1}{4} (f_{i-1j} + f_{i+1j} + f_{ij-1} + f_{ij+1} + \Delta x^2 q_{ij})$$

How do we solve it in parallel in practice?
Need to do domain decomposition.

Domain Decomposition

сри 0 сри 1 ...

- □ Column-wise decomposition
- Boundary points depend on data from neighboring CPU
 - During each iteration, need send own boundary data to neighbors, and receive boundary data from neighboring CPUs.
- Interior points depend only on data residing on the same CPU (local data).

Overlap Communication with Computations

Compute boundary points and interior points at different stages;

□ Specifically:

- At the beginning of an iteration, post non-blocking send to and receive from requests for communicating boundary data with neighboring CPUs;
- Update values on interior points;
- Check communication status (should complete by this point), wait if necessary;
- Boundary data received, update boundary points;
- Begin next iteration, repeat above steps.

Other Domain Decompositions

1D decomposition

2D decomposition

Related MPI Functions for Parallel Jacobi Algorithm

- □ MPI_Allgather()
- □ MPI_lsend()
- □ MPI_Irecv()
- □ MPI_Reduce()
- □ MPI_Allreduce()

MPI Programming Related to Your Project

- Parallel Jacobi Algorithm
- Compiling MPI programs
- Running MPI programs
- □ Machines: www.cascv.brown.edu