
Parallel Jacobi Algorithm

Steven Dong

Applied Mathematics

Overview

 Parallel Jacobi Algorithm

 Different data distribution schemes

• Row-wise distribution

• Column-wise distribution

• Cyclic shifting

• Global reduction

 Domain decomposition for solving Laplacian equations

 Related MPI functions for parallel Jacobi algorithm

and your project.

Linear Equation Solvers

 Direct solvers
 Gauss elimination

 LU decomposition

 Iterative solvers
 Basic iterative solvers

• Jacobi

• Gauss-Seidel

• Successive over-relaxation

 Krylov subspace methods

• Generalized minimum residual (GMRES)

• Conjugate gradient

Sequential Jacobi Algorithm

D is diagonal matrix

L is lower triangular matrix

U is upper triangular matrix

bAx

ULDA

))((11 kk xULbDx

Parallel Jacobi Algorithm: Ideas

 Shared memory or distributed memory:

 Shared-memory parallelization very straightforward

 Consider distributed memory machine using MPI

 Questions to answer in parallelization:

 Identify concurrency

 Data distribution (data locality)

• How to distribute coefficient matrix among CPUs?

• How to distribute vector of unknowns?

• How to distribute RHS?

 Communication: What data needs to be communicated?

 Want to:

 Achieve data locality

 Minimize the number of communications

 Overlap communications with computations

 Load balance

Row-wise Distribution

 Assume dimension of matrix can be divided by number of CPUs

 Blocks of m rows of coefficient matrix distributed to different

CPUs;

 Vector of unknowns and RHS distributed similarly

=

A x b

m

m

…

n

A: n x n

m = n/P

P is number of CPUs

Data to be Communicated

 Already have all columns of matrix A on each CPU;

 Only part of vector x is available on a CPU; Cannot carry out

matrix vector multiplication directly;

 Need to communicate the vector x in the computations.

=

A x b

m

m

…

n

))((11 kk xULbDx

Cpu 0

Cpu 1

How to Communicate Vector X?

 Gather partial vector x on each CPU to form the
whole vector; Then matrix-vector multiplication on
different CPUs proceed independently. (textbook)

 Need MPI_Allgather() function call;

 Simple to implement, but
 A lot of communications

 Does not scale well for a large number of processors.

R E D

R E D R E D R E D

How to Communicate X?

 Another method: Cyclic shift

 Shift partial vector x upward at each step;

 Do partial matrix-vector multiplication on each CPU at each

step;

 After P steps (P is the number of CPUs), the overall matrix-

vector multiplication is complete.

 Each CPU needs only to communicate with

neighboring CPUs

 Provides opportunities to overlap communication with

computations

 Detailed illustration …

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x1

x2

x3

x4

a11*x1 + a12*x2 + a13*x3 + a14*x4

a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4

a41*x1 + a42*x2 + a43*x3 + a44*x4

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x2

x3

x4

x1

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x3

x4

x1

x2

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x4

x1

x2

x3

a11*x1 + a12*x2 + a13*x3 + a14*x4

a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4

a41*x1 + a42*x2 + a43*x3 + a44*x4

a11*x1 + a12*x2 + a13*x3 + a14*x4

a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4

a41*x1 + a42*x2 + a43*x3 + a44*x4

a11*x1 + a12*x2 + a13*x3 + a14*x4

a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4

a41*x1 + a42*x2 + a43*x3 + a44*x4

(1) (2)

(3) (4)

Cpu 0

Cpu 1

Cpu 2

Cpu 3

Overlap Communications with

Computations

 Communications:
 Each CPU needs to send its own partial vector x to upper

neighboring CPU;

 Each CPU needs to receive data from lower neighboring
CPU

 Overlap communications with computations: Each
CPU does the following:
 Post non-blocking requests to send data to upper neighbor

to to receive data from lower neighbor; This returns
immediately

 Do partial computation with data currently available;

 Check non-blocking communication status; wait if necessary;

 Repeat above steps

Stopping Criterion

 Computing norm requires information of the whole

vector;

 Need a global reduction (SUM) to compute the norm

using MPI_Allreduce or MPI_Reduce.

1k kx x b
i

ii BABA 2)(

Column-wise Distribution

 Blocks of m columns of coefficient matrix A are

distributed to different CPUs;

 Blocks of m rows of vector x and b are distributed to

different CPUs;

m m …

n

A x

=

b
))((11 kk xULbDx

Data to be Communicated

 Already have coefficient matrix data of m columns,
and a block of m rows of vector x;

 So a partial A*x can be computed on each CPU
independently.

 Need communication to get whole A*x;

m m …

n

A x

=

b

How to Communicate

 After getting partial A*x, can do global reduction
(SUM) using MPI_Allreduce to get the whole A*x. So
a new vector x can be calculated.

 Another method: Cyclic shift
 Shift coefficient matrix left-ward and vector of unknowns

upward at each step;

 Do a partial matrix-vector multiplication, and subtract it from
the RHS;

 After P steps (P is number of CPUs), matrix-vector
multiplication is completed and subtracted from RHS; Can
compute new vector x.

 Detailed illustration …

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4

b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4

b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4

b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

(1) (2)

(3) (4)

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4

b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4

b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4

b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4

b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4

b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4

b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

b1 - a11*x1 - a12*x2 - a13*x3 - a14*x4

b2 - a21*x1 - a22*x2 - a23*x3 - a24*x4

b3 - a31*x1 - a32*x2 - a33*x3 - a34*x4

b4 - a41*x1 - a42*x2 - a43*x3 - a44*x4

a13 a14 a11 a12

a23 a24 a21 a22

a33 a34 a31 a32

a43 a44 a41 a42

x3

x4

x1

x2

=

b1

b2

b3

b4

a14 a11 a12 a13

a24 a21 a22 a23

a34 a31 a32 a33

a44 a41 a42 a43

x4

x1

x2

x3

=

b1

b2

b3

b4

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

x1

x2

x3

x4

=

b1

b2

b3

b4

a12 a13 a14 a11

a22 a23 a24 a21

a32 a33 a34 a31

a42 a43 a44 a41

x2

x3

x4

x1

=

b1

b2

b3

b4

Solving Diffusion Equation

 How do we solve it in parallel in practice?

 Need to do domain decomposition.

02 qf

)(
4

1 2

1111 ijijijjijiij qxfffff

Domain Decomposition

 Column-wise decomposition

 Boundary points depend on

data from neighboring CPU

 During each iteration, need

send own boundary data to

neighbors, and receive

boundary data from neighboring

CPUs.

 Interior points depend only on

data residing on the same

CPU (local data).
x

y

cpu 0 cpu 1 …

Overlap Communication with

Computations

 Compute boundary points and interior points at

different stages;

 Specifically:

 At the beginning of an iteration, post non-blocking send to

and receive from requests for communicating boundary data

with neighboring CPUs;

 Update values on interior points;

 Check communication status (should complete by this point),

wait if necessary;

 Boundary data received, update boundary points;

 Begin next iteration, repeat above steps.

Other Domain Decompositions

2D decomposition1D decomposition

Related MPI Functions for Parallel

Jacobi Algorithm

MPI_Allgather()

MPI_Isend()

MPI_Irecv()

MPI_Reduce()

MPI_Allreduce()

MPI Programming Related to Your

Project

 Parallel Jacobi Algorithm

 Compiling MPI programs

 Running MPI programs

Machines: www.cascv.brown.edu

