Parallel Jacobi Algorithm

Steven Dong
Applied Mathematics

Overview

 Parallel Jacobi Algorithm
¢ Different data distribution schemes
« Row-wise distribution
« Column-wise distribution
 Cyclic shifting
* Global reduction
*+ Domain decomposition for solving Laplacian equations

1 Related MPI functions for parallel Jacobi algorithm
and your project.

Linear Equation Solvers

1 Direct solvers
«» Gauss elimination
“ LU decomposition

O Iterative solvers

*» Basic iterative solvers
« Jacobi
« Gauss-Seidel
« Successive over-relaxation

¢ Krylov subspace methods
« Generalized minimum residual (GMRES)
« Conjugate gradient

Sequential Jacobi Algorithm

AX — b D is diagonal matrix

L is lower triangular matrix
U Is upper triangular matrix
A=D+L+U PP)

Xt =D (b—(L+U)X")

Parallel Jacobi Algorithm: Ideas

O Shared memory or distributed memory:
% Shared-memory parallelization very straightforward
* Consider distributed memory machine using MPI

L Questions to answer in parallelization:
¢ Identify concurrency
» Data distribution (data locality)
« How to distribute coefficient matrix among CPUs?
» How to distribute vector of unknowns?
* How to distribute RHS?
s Communication: What data needs to be communicated?

0 Want to:
s Achieve data locality
¢ Minimize the number of communications
% Overlap communications with computations
* Load balance

Row-wise Distribution

A X b
m A:nxn
m = n/P
m — P is number of CPUs
n

O Assume dimension of matrix can be divided by number of CPUs

[Blocks of m rows of coefficient matrix distributed to different
CPUs;

O Vector of unknowns and RHS distributed similarly

Data to be Communicated

A X b
Cpu0
_ Cpul
, Xt =D(b—(L+U)x")
n

O Already have all columns of matrix A on each CPU;

O Only part of vector x is available on a CPU; Cannot carry out
matrix vector multiplication directly;

O Need to communicate the vector x in the computations.

How to Communicate Vector X?

1 Gather partial vector x on each CPU to form the
whole vector; Then matrix-vector multiplication on
different CPUs proceed independently. (textbook)

E D

———

@ RLEI D R E D

1 Need MPI_Allgather() function call;

d Simple to implement, but
¢ A lot of communications
¢ Does not scale well for a large number of processors.

How to Communicate X?

d Another method: Cyclic shift
» Shift partial vector x upward at each step;

“* Do partial matrix-vector multiplication on each CPU at each
step;

» After P steps (P is the number of CPUSs), the overall matrix-
vector multiplication is complete.
O Each CPU needs only to communicate with
neighboring CPUs
¢ Provides opportunities to overlap communication with
computations

[Detailed illustration ...

all al2 §a13 al4 x1 all al? §a13 al4 X2
(1) a2l a22 a23 a24 X2 (2) a2l a22 a23 a24 X3
a3l 1 a32 | a33 ia34 X3 a3l 1 a32 | a33 ia34 x4
adl ad2 a43 ad4 x4 a4l ad2 a43 ad4 x1
all*x1 +al2*x2 + al3*x3 + al4*x4 Cpu0 all*x1 +al2*x2 +al3*x3 + al4*x4
a21*x1 + a22*x2 + a23*x3 + a24*x4 cpul a21*x1 + a22*x2 + a23*x3 + a24*x4

a31*x1 + a32*x2 + a33*x3 + a34*x4 cpu>2 a31*x1 + a32*x2 + a33*x3 + a34*x4
a4l1*x1 + ad2*x2 + ad3*x3 + ad44*x4 Cpu3 adl1*x1 + ad2*x2 + ad43*x3 + a44*x4

all al2 Ea13 al4 X3 all al2 Ea13 al4 x4

(3) a2l a22 a23 a24 x4 (4) a2l a22 a23 a24 x1

a3l |a32 | a33 |a34 x1 a3l |a32 | a33 |a34 X2

a4l a42 a43 ad4 X2 a4l a42 a43 ad44 X3
al1*x1 + al2*x2 + a13*x3 + ald*x4 all*x1 +al2*x2 + al3*x3 + ald*x4
a21*x1 + a22*x2 + a23*x3 + a24*x4 a21*x1 + a22*x2 + a23*x3 + a24*x4
231*x1 + a32*x?2 + a33*x3 + a34*x4 a31*x1 + a32*x2 + a33*x3 + a34*x4

ad1*x1 + a42*x?2 + ad3*x3 + add*x4 ad1*x1 + ad2*x2 + a43*x3 + ad44*x4

Overlap Communications with
Computations

J Communications:

“ Each CPU needs to send its own partial vector x to upper
neighboring CPU;

< Each CPU needs to receive data from lower neighboring
CPU
1 Overlap communications with computations: Each
CPU does the following:

¢ Post non-blocking requests to send data to upper neighbor
to to receive data from lower neighbor; This returns
Immediately

¢ Do partial computation with data currently available;
¢ Check non-blocking communication status; wait if necessary;
*» Repeat above steps

Stopping Criterion

o <elp] e SAEy

O Computing norm requires information of the whole
vector;

1 Need a global reduction (SUM) to compute the norm
using MPI_Allreduce or MPIl_Reduce.

Column-wise Distribution

mm ...

A = - Xt =D (b—(L+U)x")

[Blocks of m columns of coefficient matrix A are
distributed to different CPUS;

[Blocks of m rows of vector x and b are distributed to
different CPUSs;

Data to be Communicated

mm ...

A X b

O Already have coefficient matrix data of m columns,
and a block of m rows of vector X;

1 So a partial A*x can be computed on each CPU
iIndependently.

1 Need communication to get whole A*x;

How to Communicate

1 After getting partial A*x, can do global reduction
(SUM) using MPI_Alilreduce to get the whole A*x. So
a new vector x can be calculated.

 Another method: Cyclic shift

«» Shift coefficient matrix left-ward and vector of unknowns
upward at each step;

“ Do a partial matrix-vector multiplication, and subtract it from
the RHS;

s After P steps (P is number of CPUs), matrix-vector
multiplication is completed and subtracted from RHS; Can
compute new vector X.

[Detailed illustration ...

all | al2 | al3 ald x1 bl

(1) a2l | a22 a23 | a24 X2 _ b2
a3l | a32 a33 | a34 X3 b3
a4l | a42 ad3 | ad4 x4 b4

<—

bl -all*x1 -al2*x2 - al3*x3 - al4*x4
02 -a21*x1 - a22*x2 - a23*x3 - a24*x4
03 -a31*x1 - a32*x2 - a33*x3 - a34*x4
D4 - ad41*x1 - ad42*x2 - a43*x3 - ad44*x4

al3 | al4 Jall al2 x3 bl
(3) a23 | a24 a2l | a22 x4 _ b2
a33 | a34 a3l | a32 x1 B b3
a43 | ad44 adl _a42 X2 b4

< |

bl -all*xl -al2*x2 - al3*x3 - ald*x4
D2 -a21*x1 - a22*x2 - a23*x3 - a24*x4
D3 -a31*x1 - a32*x2 - a33*x3 - a34*x4
D4 - adl1*x1 - ad2*x2 - a43*x3 - ad4d*x4

(2)

(4)

al2 | al3 Jal4 all X2 bl
a22 | a23 a24 | a2l X3 _ b2
a32 | a33 a34 | a3l x4 B b3
ad2 | a43 ad4 _a41 x1 b4

< |

bl -all*x1l -al2*x2 - al3*x3 - al4*x4
D2 -a21*x1 - a22*x2 - a23*x3 - a24*x4
D3 -a31*x1 - a32*x2 - a33*x3 - a34*x4
D4 - ad41*x1 - ad2*x2 - a43*x3 - ad44*x4

al4 | all jal2 al3 x4 bl
a24 | a21 a22 | a23 x1 b2
a34 | a3l a32 | a33 X2 B b3
ad4 | a4l ad2 _a43 x3 b4

< |

bl - all*x1 - al2*x2 - a1l3*x3 - al4*x4
b2 - a21*x1 - a22*Xx2 - a23*x3 - a24*x4
b3 -a31*x1 - a32*x2 - a33*x3 - a34*x4
b4 - a41*x1 - ad42*x2 - a43*x3 - ad44*x4

Solving Diffusion Equation

Vv f+g=0

] L+

i +1 T,
4

2
I+1j Ij+l+AX qij)

1 How do we solve it in parallel in practice?
1 Need to do domain decomposition.

cpu 0

Domain Decomposition

cpul

FiFFFFFFEETFEFEFFFFyrryrd
iy e e e T e i e, T e i T T e T e T e T N

T FFEFEFFTETFTFTFFFFFF

e T T e T e T T e e T e,

v

1 Column-wise decomposition

1 Boundary points depend on
data from neighboring CPU

* During each iteration, need
send own boundary data to
neighbors, and receive
boundary data from neighboring
CPUs.

A Interior points depend only on
data residing on the same
CPU (local data).

Overlap Communication with
Computations

O Compute boundary points and interior points at
different stages;
1 Specifically:
“ At the beginning of an iteration, post non-blocking send to

and receive from requests for communicating boundary data
with neighboring CPUs;

s Update values on interior points;

s Check communication status (should complete by this point),
wait if necessary;,

s Boundary data received, update boundary points;
*» Begin next iteration, repeat above steps.

Other Domain Decompositions

1D decomposition 2D decomposition

Related MPI Functions for Parallel
Jacobi Algorithm

d MPI1_Allgather()
d MPI1_Isend()

O MPI_Irecv()

O MPI_Reduce()
d MPI1_Allreduce()

MPI Programming Related to Your
Project

O Parallel Jacobi Algorithm

O Compiling MPI programs

1 Running MPI programs

L Machines: www.cascv.brown.edu

