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Constructing accurate and generalizable approximators (surrogate models) for complex 
physico-chemical processes exhibiting highly non-smooth dynamics is challenging. The main 
question is what type of surrogate models we should construct and should these models be 
under-parametrized, deterministic or over-parametrized; the latter refers to the number of 
model parameters compared to available data. In this work, we propose new developments and 
perform comparisons for two promising approaches: manifold-based polynomial chaos 
expansion (m-PCE) and the deep neural operator (DeepONet), and we examine the effect of 
over-parametrization on generalization. While m-PCE enables the construction of a mapping by 
first identifying low-dimensional embeddings of the input functions, parameters, and quantities 
of interest (QoIs), a neural operator learns the nonlinear mapping via the use of deep neural 
networks. Both models are capable of overcoming the curse-of-dimensionality in the input 
space. We demonstrate the performance of these methods in terms of generalization accuracy 
for solving the 2D time-dependent Brusselator reaction-diffusion system with multiple sources, 
modeling an autocatalytic chemical reaction between two species. To tackle this problem, we 
first propose an extension of the m-PCE method by constructing a mapping between latent 
spaces formed by two separate embeddings that represent the input functions and QoIs. To 
further enhance the accuracy of DeepONet, we introduce weight self-adaptivity in the loss 
function. We demonstrate that the performance of m-PCE and DeepONet is comparable for 
cases of relatively smooth input-output mappings, however, when highly non-smooth dynamics 
is considered, DeepONet shows higher approximation accuracy. We also find that for m-PCE, 
modest over-parametrization leads to better generalization, both within and outside of 
distribution (OOD), whereas aggressive over-parametrization leads to over-fitting. In contrast, 
an even highly over-parametrized DeepONet leads to better generalization for both smooth and 
non-smooth dynamics. Furthermore, we  compare the performance of the above models with 
another recently proposed operator learning model, namely the Fourier Neural Operator (FNO), 
and show that its over-parametrization also leads to better generalization. Taking together, our 
studies show that m-PCE can provide very good accuracy at very low training cost, whereas a 
highly over-parametrized DeepONet can provide better accuracy and robustness to noise but at 
higher training cost. In both methods, the inference cost is negligible.
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