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SUMMARY

The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with
shocks on standard unstructured grids are presented in this paper. The new method is based on a
discontinuous Galerkin formulation both for the advective and the diffusive contributions. High-order
accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by
combining Jacobi polynomials of high-order weights written in a new co-ordinate system. It retains a
tensor-product property, and provides accurate numerical quadrature. The formulation is conservative,
and monotonicity is enforced by appropriately lowering the basis order and performing h-refinement
around discontinuities. Convergence results are shown for analytical two- and three-dimensional solu-
tions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new
method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic
flows are also presented that demonstrate discretization flexibility using hp-type refinement. Unlike other
high-order methods, the new method uses standard finite volume grids consisting of arbitrary trianguliza-
tions and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Despite great research efforts in designing good unstructured grids for aerodynamic flows,
especially for three-dimensional simulations, most finite element and finite volume solutions
depend strongly on the quality of the grid. In particular, for highly distorted grids, convergence
is questionable and in most cases convergence rates are typically less than second-order.
Moreover, efforts to increase the accuracy of finite volume methods to higher than second-or-
der have not been very successful as conservativity in the formulation or monotonicity of the
solution have to be compromised.

In previous works [1,2], a spectral/hp Galekin method for the numerical solution of the two-
and three-dimensional unsteady incompressible Navier–Stokes equations on unstructured grids
has been developed (parallel code NokTar). The discretization is based on arbitrary trian-
gulizations/tesselations of complex geometry domains. On each triangle/tetrahedron, a C0

spectral expansion basis is employed consisting of Jacobi polynomials of mixed weight that
accommodate exact numerical quadrature. The hierarchical expansion basis is of variable
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order per element and retains the tensor-product property (similar to standard spectral
expansions), which is key in obtaining computational efficiency via the sum factorization
technique. The use of a C0 basis, however, leads to a partial loss of orthogonality, with the
resulted global mass and stiffness matrices although sparse not easily invertible.

In this paper, algorithms for the compressible Navier–Stokes employing similar high-order
spectral/hp element discretizations are considered, but following a new formulation that allows
the use of orthogonal basis. In particular, a discontinuous Galerkin formulation is developed
both for the advective as well as the diffusive components of the Navier–Stokes equations.
This allows multidomain representation with a discontinuous (i.e. globally L2) trial basis. This
discontinuous basis is orthogonal, hierarchical, and maintains a tensor-product property (even
for tetrahedra) [3]. In a previous work [4], a hybrid method based on a discontinuous Galerkin
formulation for the hyperbolic contribution and a mixed Galerkin formulation for the diffusive
contribution was developed. Such a formulation requires two sets of trial basis, one in L2 and
another one in C0. The latter trial basis leads to a loss of orthogonality, and thus to a loss of
high efficiency, unlike the currently proposed method. Finally, in the proposed formulation,
the conservativity property is maintained automatically by the discontinuous Galerkin formu-
lation, while monotonicity is controlled by varying the order of the spectral expansion and by
performing h-refinement around discontinuities.

The work presented here was motivated by the work of Cockburn and Shu on discontinuous
finite elements for hyperbolic problems presented in a series of papers [5–8]. An implementa-
tion of these ideas for quadrilateral Legendre spectral elements was developed in [9]. Work on
discontinuous Galerkin methods for diffusion is more recent [10], and has been extended to
compressible Navier–Stokes equations [11,12]. Discontinuous Galerkin methods use concepts
both from finite volume and finite element methodology. In this paper, high-order accuracy is
added by using spectral/hp expansions on standard unstructured grids. The proposed method
is new both in the formulation (e.g. construction of inviscid and viscous fluxes—no need for
limiters) as well as in the discretization. It is more efficient than the method developed in [11]
as it does not require inversion of the mass matrix, which is diagonal due to the orthogonality
of the basis and the exact quadrature. It also presents, for first time, exponential accuracy and
flow simulations on three-dimensional unstructured grids.

The paper is organized as follows: in Section 2, the formulation for advection and diffusion
scalar equations are presented separately for clarity, and subsequently, the two are combined
in the context of compressible Navier–Stokes equations. Also, the new spectral basis on
triangles and tetrahedra is reviewed. In Section 3, two- and three-dimensional convergence
results are presented, and in Section 4, simulations of subsonic flow past a circular cylinder up
to Re=10000, a transonic flow past a NACA0012 airfoil, and a supersonic flow past a
NACA4420 airfoil are presented. Section 5 concludes with a brief summary.

2. NUMERICAL FORMULATION

Consider the non-dimensionalized compressible Navier–Stokes equations, which are written in
compact form as

Ub t+9 ·F=Re�−19 ·F n, (1)

where F and F n correspond to inviscid and viscous flux contributions respectively. Here the
vector Ub = [r, ru, r6, rw, E ]t with (u, 6, w) being the local fluid velocity, r the fluid density,
and E the total internal energy. Splitting the Navier–Stokes operator in this form allows for
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a separate treatment of the inviscid and viscous contributions, which in general exhibit
different mathematical properties. In the following, the discontinuous Galerkin formulations
employed in the proposed method are reviewed briefly. A rigorous analysis of the advection
operator was presented in [4], where a mixed formulation was used to treat the diffusion terms.
No flux limiters are necessary as has been found in [13] and justified theoretically in [14].

2.1. Discontinuous Galerkin for ad6ection

To explain the formulation, consider the linear two-dimensional equation for advection of a
conserved quantity u in a region V

(u
(t

+9 ·F(u)=0, (2)

where F(u)= ( f(u), g(u)) is the flux vector that defines the transport of u(x, t). You start with
the variational statement of the standard Galerkin formulation of (2) by multiplying by a test
function 6 and integrating by parts&

V

(u
(t
6 dx+

&
(V
6n̂ ·F(u) ds−

&
V

96 ·F(u) dx=0. (3)

The solution u�X (approximation space) satisfies this equation for all 6�V (test space). The
requirement that X consist of continuous functions naturally leads to a basis consisting of
functions with overlapping support, which implies Equation (3) becomes a banded matrix
equation. Solving the corresponding large system is not a trivial task for parallel implementa-
tions, and therefore, a different type of formulation is desirable.

Another consideration from the point of view of advection is that continuous function
spaces are not the natural place to pose the problem. Mathematically, hyperbolic problems of
this type tend to have solutions in spaces of bounded variation. In physical problems, the best
one can hope for in practice is that solutions will be piecewise continuous, i.e. be smooth in
regions separated by discontinuities (shocks). An additional consideration is that the formula-
tion presented next preserves automatically conservativity in the elementwise sense.

These considerations immediately suggest a formulation where X may contain discontinuous
functions. The discrete space Xd contains polynomials within each ‘element’, but zero outside
the element. Here, the ‘element’ is, for example, an individual triangular region Ti in the
computational mesh applied to the problem. Thus, the computational domain V= iTi, and
Ti, Tj overlap only on edges.

Contending with the discontinuities requires a somewhat different approach to the varia-
tional formulation. Each element (E) is treated separately, giving a variational statement (after
integrating by parts once more):

(

(t
(u, 6)E+

&
(T E

6(f0 (ui, ue)−F(ui)) ·n ds+ (9 ·F(u), 6)E=0, (4)

where F(ui) is the flux of the interior values. Computations on each element are performed
separately, and the connection between elements is a result of the way boundary conditions are
applied. Here, boundary conditions are enforced via the numerical surface flux f0 (ui, ue) that
appears in Equation (4). Because this value is computed at the boundary between adjacent
elements, it may be computed from the value of u given at either element. These two possible
values are denoted here as ui in the interior of the element under consideration and ue in the
exterior (see Figure 1). Upwinding considerations dictate how this flux is computed. In the
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more complicated case of a hyperbolic system of equations, an approximate Riemann solver
should be used to compute a value of f, g, h (in three dimensions) based on ui and ue.

Specifically, the flux f0 (ui, ue) is computed using upwinding, i.e.

f0 (u)=RL+Lui+RL−Lue,

where A (the Jacobian matrix of F) is written in terms of the left and right eigenvectors, i.e.
A=RLL, with L containing the corresponding eigenvalues in the diagonal; also, L9= (L9
�L�)/2. Alternatively, a standard Roe-splitting flux can be used

f0 (u)=
1
2

(f(ue)+ f(ui))−
1
2

R �L�L(ue−ui).

This last form is what is used in the examples presented here.

2.2. Discontinuous Galerkin for diffusion

Consider as a model problem, the parabolic equation with variable coefficient n to
demonstrate the treatment of the viscous contributions:

ut=9 · (n9u)+ f in V, u�L2(V),

u=g(x, t) on (V.

Then the flux variable is introduced

q= −n9u,

with q(x, t)�L2(V), and rewrite the parabolic equation

ut= −9 ·q+ f, in V,

1/nq= −9u, in V,

u=g(x, t), on (V.

The weak formulation of the problem is then:
Find (q, u)�L2(V)×L2(V) such that

(ut, w)E= (q, 9w)E−�w, qb·n�E+ (f, w)E, Öw�L2(V),

1/n(qm, v)E= (u, 9 ·v)E−�ub, v ·n�E, Öv�L2(V),

u=g(x, t), on (V,

Figure 1. Interface conditions between two adjacent triangles.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)
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Figure 2. Triangle-to-rectangle transformation.

where the parentheses denote standard inner product in an element (E) and the angle brackets
denote boundary terms on each element, with n denoting the unit outwards normal. The
surface terms contain weighted boundary values of 6b, qb, which can be chosen as the
arithmetic mean of values from the two sides of the boundary, i.e. 6b=0.5(6i+6e) and
qb=0.5(qi+qe).

By integrating by parts once more, you obtain an equivalent formulation which is easier to
implement and it is actually used in the computer code. The new variational problem is

(ut, w)E= (−9 ·q, w)E−�w, (qb−qi) ·n�E+ (f, w)E, Öw�L2(V),

1/n(q, v)E= (−9u, v)E−�ub−ui, v ·n�E, Öv�L2(V),

u=g(x, t), in (V,

where the subscript i denotes contributions evaluated at the interior side of the boundary.

2.3. Spectral/hp element discretization

This subsection begins with a definition of a convenient set of local co-ordinates upon which
the expansions can be constructed. Moving away from the use of barycentric co-ordinates,
which are typically applied to unstructured domains, a set of collapsed Cartesian co-ordinates
in non-rectangular domains is defined. These co-ordinates will form the foundation of the
polynomial expansions. The new co-ordinate system is based upon the transformation of a
triangular region to a rectangular domain (and 6ice 6ersa), as shown in Figure 2. The main
effect of the transformation is to map the vertical lines in the rectangular domain (i.e. lines of
constant h1) onto lines radiating out of the point (j1= −1, j2=1) in the triangular domain.
The triangular region can now be described using the ‘ray’ co-ordinate (h1) and the standard
horizontal co-ordinate (j2=h2). The triangular domain is therefore defined by (−15h1, h25
1) rather than the Cartesian description (−15j1, j2; j1+j250), where the upper bound
couples the two co-ordinates. As illustrated in Figure 3, the same transformation can be
repeatedly applied to generate a new co-ordinate system for the tetrahedron.

A polynomial expansion for the tetrahedron can be developed based upon the new local
co-ordinate system. This expansion can be expressed as polynomials in terms of the local
co-ordinates as well as the Cartesian co-ordinates (j1, j2, j3). This is a significant property as
primary operations, such as integration and differentiation, can be performed with respect to
the local co-ordinates, but the expansion may still be considered as a polynomial expansion in
terms of the Cartesian system.

Expansions that are orthogonal in the Legendre inner product are considered. Three
principle functions f i

a(z), f ij
b(z) and f ijk

c (z), are defined in terms of the Jacobi polynomial,
Pp

a,b(z), as:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)



I.
L

O
M

T
E

V
A

N
D

G
.E

.
K

A
R

N
IA

D
A

K
IS

592

C
opyright

©
1999

John
W

iley
&

Sons,
L

td.
Int.

J.
N

um
er.

M
eth.

F
luids

29:
587

–
603

(1999)

Figure 3. Hexahedron-to-tetrahedron transformation.
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f i
a(z)=Pi

0,0(z), f ij
b(z)=

�1−z
2

�i

P j
2i+1,0(z), f ijk

c (z)=
�1−z

2
�i+ j

Pk
2i+2j+2,0(z).

Using these functions, an orthogonal polynomial expansion on a tetrahedron can be
constructed:

fpqr(j1, j2, j3)=fp
a(h1)fpq

b (h2)fpqr
c (h3),

where

h1=
2(1+j1)

(−j2−j3)
−1, h2=

2(1+j2)
(1−j3)

−1, h3=j3,

are the local co-ordinates. In the following, the maximum polynomial order will be denoted as
P, and this can be varying from one element to another.

An important property of this tetrahedral spectral basis is that it is orthogonal in the new
co-ordinate system that is introduced; unlike the expansions developed in [2]. This is possible
as the C0 continuity condition of the basis in the discontinuous Galerkin formulation is not
required. This greatly simplifies the formulation since all mass matrices are diagonal and their
inversion is trivial. Finally, it is noted that the bases are all hierarchical, which means that
increasing the polynomial order of any expansion simply adds extra modes to the existing
basis. Hierarchical expansions naturally lead to p-type adaptivity, where the polynomial order
of the expansion can differ within each elemental domain. This is a very attractive property as
it permits the polynomial order of the expansion to be altered in order to capture the spatial
characteristics of the solution.

3. CONVERGENCE

This section demonstrates the exponential convergence of the discontinuous Galerkin method,
first for the parabolic equation and second for the compressible Navier–Stokes equations.

The first benchmark problem is for a curved 2D geometry as shown Figure 4. An analytical
solution of the parabolic equation ut=92u of the form

u=e−2t sin x sin y

is employed with corresponding Dirichlet boundary conditions. Exponential convergence of
the method is shown in Figure 4, where the results from a discretization using a mixed
formulation [4] are included. The accuracy of the mixed method is slightly better, because the
flux variable q is computed (for stability) in the space of polynomials of one degree higher than
the original function u, unlike the discontinuous Galerkin formulation. Here, the big computa-
tional gain offered by using the discontinuous Galerkin formulation should be mentioned.
Since the basis for this formulation is orthogonal, the matrix is diagonal and thus trivial to
invert. In contrast, in the mixed Galerkin formulation, since q is continuous, a global mass
matrix has to be inverted at every time step, which makes the computation more expensive.
The error plot in Figure 4 shows P-convergence. Figure 5 also examines h-convergence. The
polynomial order was fixed in each element and the number of elements was varied from 16
to 1024. Four different geometries of with nel=16, 256, 512 and 1024 elements in a square
domain were considered. The plot shows accuracy of order O(hP+1) (for even P) and (at least)
of order O(hP) (for odd P), in agreement with the 1D results and theory of [10].

The next test demonstrates how convergence is affected by element distortion. The parabolic
equation ut=92u is solved for an analytical solution of the form

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)
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Figure 4. Parabolic equation: /Computational domain (left) and error plot (right). � corresponds to mixed Galerkin method, , discontinuous Galerkin method.
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Figure 5. L� error of a parabolic problem as a function of the number of elements. �, 0th polynomial order
(constants); �, 1st order; , 2nd order; �, 3rd order. L� and the number of elements are in logarithmic scale.

u=ep2t/12 sin
px
6

sin
py
6

sin
pz
6

,

with exact boundary conditions prescribed at all boundaries. The integration is for 1000 time
steps with Dt=10−5 to eliminate any temporal errors. Four different meshes consisting of 12
tetrahedra, as shown in Figure 6, are considered. All tetrahedra share a common vertex at the
center of the box, which is moved as shown to cause distortion of the tetrahedra. In the

Figure 6. L� error of a 3D parabolic problem as a function of the number of modes. Domain D has elements with
aspect ratio of 20.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)
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Figure 7. L� error vs. the expansion order for the energy of an analytic solution of the steady 2D Navier–Stokes
equations obtained by (1) �, discontinuous; (2) �, mixed Galerkin formulation.

domain D, elements with aspect ratio of 20 are obtained. The error plot of Figure 6 shows that
there is a small effect of distortion, but exponential convergence is maintained.

To test the accuracy of the Navier–Stokes algorithm, analytical solutions are used. First,
two dimensions on a square domain, defined by the left-low and right-up corners ([−1, −1],
[1, 1]) and discretized in eight triangles, are considered. On the left and right sides, periodic
boundary conditions are assumed and on the top and bottom Dirichlet boundary conditions
are prescribed. The analytical solution has the form

r=A+B sin(vx), u=C+D cos(vx) sin(vy), T=E+Fy,

where v=p, A=1, B=0.1, C=1, D=0.04, E=84 and F=28. The Navier–Stokes equa-
tions are then integrated using a forcing term consistent with the above solution. Figure 7
shows the comparison of the L� error for the total energy, where the viscous part was
computed using mixed (see [4]) and discontinuous Galerkin formulations. The results are
almost identical and show exponential convergence.

Next, the convergence of the method in a three-dimensional domain, as shown in Figure 8,
is tested numerically. The analytical solution has the form

r=A+B sin(vx), u=C+D cos(vx) sin(vy) cos(vz), T=E+Fy+Gz2,

where v=p/2, A=1, B=0.1, C=1, D=0.04, E=84, F=28 and G=10. Exponential
convergence is demonstrated in Figure 8.

4. SIMULATIONS

Next, subsonic and supersonic flow simulations are presented. Firstly, a subsonic flow past a
circular cylinder performed on the domain shown in Figure 9 is compared with the trianguliza-

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)
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Figure 8. L� error vs. the expansion order for the energy (
), momentum (�) and density (�) of an analytic solution
of the steady 3D Navier–Stokes equations.

tion; 462 elements were used and two sets of simulations were performed, one at order P=4
and one at order P=6. In Figure 10 shows density contours and streamlines of the
instantaneous field that shows the von Karman vortex street observed in low Mach number
flows.

In Figure 10, the centerline average velocity versus the streamwise distance is plotted for
both the low and high resolution as well as for another simulation based on a spectral element
(collocation) formulation for subsonic flows [15]. Also, the current results are compared with

Figure 9. Computational domain for subsonic flow past a cylinder; 462 elements are used in the discretization.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)
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Figure 10. Left: instantaneous density contours and streamlines for flow past a circular cylinder at Mach number 0.2 and Reynolds number 100. Right: average
centerline velocity. Shown with solid line is the high resolution simulation (P=6), with dash line the low resolution simulation (P=4), and with dot line simulation

using a spectral element collocation scheme due to Beskok [15].
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Figure 11. Left: discretization around a cylinder; 680 elements are used. right: instantaneous density contours at Mach
number 0.2 and Reynolds number 10000.

results obtained with a code using a mixed formulation for the viscous terms [4]. The Strouhal
number (non-dimensional frequency) is 0.1659 (mixed formulation: 0.1656), which is in
agreement with the experimental results reported in [16]. The drag coefficient is 1.3764 (mixed
formulation: 1.3757), which is in good agreement with a simulation of corresponding incom-
pressible flow [17] and with the experimental value 1.35. Also, the lift coefficient is 0.339
(mixed formulation: 0.333), again in good agreement with the simulations in [17].

The flexibility in discretization is demonstrated in Figure 11, showing the grid used when the
Reynolds number was increased to Re=10000. A similar mesh of large elements is used,
except around the cylinder where an h-refinement is performed. Elements of variable polyno-
mial order are then used away from the cylinder. The total number of elements is nel=680 and
the maximum order used is P=6. An instantaneous plot of the density in the near-wake is also
shown in Figure 11, which clearly shows the shear layer instability observed experimentally

Figure 12. Discretization around a NACA0012 airfoil; 592 elements are used.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)
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Figure 13. Mach contour lines for discretization with P=2 (left) and P=4 (right).

[18]. The Strouhal frequency is St=0.2446, higher than the experimental value as expected for
this 2D simulation.

Considered next is a refinement study for a transonic flow past an airfoil NACA0012 at an
angle of attack a=10°, free-stream Mach number Ma=0.8, and Reynolds number based on
the free-stream velocity and the airfoil chord equal to Re=73. The wall temperature is equal
to the free-stream total temperature. The same problem is considered in [11] and is one of the
benchmark problems suggested in the GAMM (1986) workshop [19]. The mesh is shown in
Figure 12; it extends four chords downstream and consists of 592 elements, which is about a
quarter of the number used in [11]. Three different discretizations with P-refinement were used,
corresponding to order 2, 4 and 6. The maximum order used in [11] was 3. In Figure 13, Mach
contours are plotted for the first two discretizations (P=2 and 4) that show the improvement
in the solution as the polynomial order is increased. A more quantitative comparison is shown
in Table I, where the drag and lift coefficients for the three meshes are presented; very good
agreement with the results of [11] is obtained. The same is true for the distribution of the
pressure and friction coefficients around the airfoil, as shown in Figure 14.

The last simulation is a supersonic flow past a NACA 4420 airfoil at Mach number 2 and
Reynolds number (based on the chord length) 2400; the angle of attack is 20°. The domain
extends from 1.25 chords upstream to 3.75 chords downstream and is discretized with 1492
triangles. Discretization and density contours and streamlines are shown in Figure 15; the
results are identical to earlier results obtained with results using a mixed formulation in [4].
Variable polynomial order is used from zero (constant elements) around the shock to P=5 in
the wake. No flux limiters or filtering were used in this simulation.

Table I. Drag and lift coefficients corresponding to different P-refinements

P=4 P=6Item P=2

0.67858 0.6758Cd 0.68287
0.47625 0.53022 0.53173Cl

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)
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Figure 14. Pressure (left) and drag (right) coefficients; 
, data from [11] and × , from the current simulation for
P=6.

5. SUMMARY

We have developed a new method for solving compressible Navier–Stokes equations on
standard unstructured grids consisting of arbitrary triangles and tetrahedra, and presented
several convergence tests and flow simulations for validation. The new method is based on a
discontinuous Galerkin treatment of the advective and diffusive component. This, in turn,
allows the use of orthogonal tensor-product spectral basis in these non-orthogonal subdo-
mains, which results in high computational efficiency. In particular, the computational cost is
nel=Pd+1 (where d=2 or 3 in 2D and 3D respectively) with nel being the number of elements
and P the polynomial order in an element. This cost corresponds to the differentiation and

Figure 15. Discretization around a NACA4420 airfoil (left) and density contours and streamlines (right); Mach
number 2.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)
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integration costs on the entire domain and is similar to the cost of such operations in standard
global methods in simple separable domains [20]. The only matrix inversion required is that of
a local mass matrix, which is diagonal, and thus trivial to invert.

Spectral and high-order methods in solving compressible viscous flows in the presence of
shocks have not been popular in the past due primarily to problems associated with solution
monotonicity. Typically, filtering, limiters or non-oscillatory reconstruction algorithms are
involved, which are neither efficient nor robust for most aerodynamic applications (see
[21,22]). The method presented here borrows from features of finite volumes, finite elements
and spectral methods, and is both robust and flexible as it is conservative, it does not rely on
flux limiters, and it works on standard unstructured grids.

ACKNOWLEDGMENTS

The authors would like to thank Professor C.-W. Shu, Dr C.B. Quillen, Dr S.J. Sherwin and
Mr T.C. Warburton for many useful suggestions regarding this work. This work was
supported by AFOSR.

REFERENCES

1. S.J. Sherwin and G.E. Karniadakis, ‘A triangular spectral element method; applications to the incompressible
Navier–Stokes equations’, Comp. Methods Appl. Mech. Eng., 23, 83 (1995).

2. S.J. Sherwin and G.E. Karniadakis, ‘Tetrahedral hp finite elements: algorithms and flow simulations’, J. Comp.
Phys., 122, 191 (1995).

3. M. Dubiner, ‘Spectral methods on triangles and other domains’, J. Sci. Comp., 6, 345 (1991).
4. I. Lomtev, C.B. Quillen, and G.E. Karniadakis, ‘Spectral/hp methods for viscous compressible flows on

unstructured 2D meshes’, J. Comp. Phys., 144, 325–357 (1998).
5. B. Cockburn and C.-W. Shu, ‘TVB Runge–Kutta local projection discontinuous Galerkin finite element method

for conservation laws II: general framework’, Math. Comp., 52, 411–435 (1989).
6. B. Cockburn, S.-Y. Lin and C.-W. Shu, ‘TVB Runge–Kutta local projection discontinuous Galerkin finite

element method for conservation laws III: one-dimensional systems’, J. Comp. Phys., 84, 90–113 (1989).
7. B. Cockburn, S. Hou and C.-W. Shu, ‘The Runge–Kutta local projection discontinuous Galerkin finite element

method for conservation laws IV: the multi-dimensional case’, J. Comp. Phys., 54, 545 (1990).
8. B. Cockburn and C.-W. Shu, ‘P1–RKDG method for two-dimensional Euler equations of gas dynamics’, In Proc.

4th Int. Symp. on CFD, UC Davis, 1991.
9. R. Biswas, K. Devine and J. Flaherty, ‘Parallel, adaptive finite element methods for conservation laws’, Appl.

Numer. Math., 14, 255–283, 1994.
10. B. Cockburn and C.-W. Shu, ‘The local discontinuous Galerkin for time dependent convection–diffusion systems’,

SIAM J. Numer. Anal. (1998) to appear.
11. F. Bassi and S. Rebay, ‘A high-order-accurate discontinuous finite element method for the numerical solution of

the compressible Navier–Stokes equations’, J. Comp. Phys., 131, 267 (1997).
12. F. Bassi, S. Rebay, M. Savini, G. Marioti and S. Pedinotti, ‘A high-order-accurate discontinuous finite element

method for inviscid and viscous turbomachinery flows, in Proc. 2nd Europ. Conf. on Turbomachinery, Fluid
Dynamics and Thermodynamics, Antwerp, Belgium, March 5–7, 1997.

13. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge
University Press, Cambridge, 1994.

14. G. Jiang and C.W. Shu, ‘On a cell entropy inequality for discontinuous Galerkin methods’, Math. Comp., 62, 531
(1994).

15. A. Beskok, ‘Simulations and models for gas flows in micro-geometries’, Ph.D. Thesis, Princeton University, June,
1996.

16. M. Hammache and M. Gharib, ‘An experimental study of the parallel and oblique vortex shedding from circular
cylinders’, J. Fluid Mech., 232, 567–590 (1991).

17. R.D. Henderson, ‘Details of the drag curve near the onset of vortex shedding’, Phys. Fluids, 7, 1–3 (1995).
18. M.S. Bloor, ‘The transition to turbulence in the wake of a circular cylinder’, J. Fluid Mech., 19, 290 (1964).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)



DISCONTINUOUS GALERKIN METHOD FOR NAVIER–STOKES 603

19. ‘Numerical simulation of compressible Navier–Stokes equations—external 2D flows around a NACA0012
airfoil’, in INRIA (eds.), GAMM Workshop, December 4–6 1985, Nice, France, Centre de Rocquefort, de Rennes
et de Sophia-Antipolis, 1986.

20. D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods, SIAM, Philadelphia, 1977.
21. W. Cai, D. Gottlieb and C.W. Shu, ‘Non-oscillatory spectral Fourier methods for shock wave calculations’, Math.

Comp., 52, 389–410 (1989).
22. J. Giannakouros and G.E. Karniadakis, ‘A spectral element—FCT method for the compressible Euler equations’,

J. Comp. Phys., 115, 65 (1994).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 587–603 (1999)


