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Gaussian Process Regression (GPR) is a powerful interpolation technique to construct a predictive 
model with a finite set of observation points available in a system. The analytical property of GPR, 
wherein any linear transformation of a Gaussian process remains Gaussian, offers distinctive 
opportunities for integrating diverse forms of physics-based knowledge into the GPR framework. In 
this work, we propose three hybridization approaches that integrate physics-based knowledge with 
GPR, aiming to augment the GPR model’s capacity to incorporate crucial physics-based insights and 
effectively bridge the gap between domain-specific knowledge and data-driven predictions. First, 
we address the impact of physics-based penalization in hyperparameter optimization of GPR. The 
hyperparameters in GPR are often estimated by maximum likelihood estimation (MLE), but it may 
produce biased estimates under sparse data scenarios as it solely depends on training data. To 
tackle this challenge, leveraging additional physics-based information available within the system 
to regularize MLE can yield a more refined hyperparameter set. This, in turn, enhances the 
predictive efficacy of the model by reducing the discrepancy with respect to physical information. 
We present a series of results showing that the physics-based penalization in MLE can improve 
prediction performance, reduce uncertainty, mitigate overfitting problems, and capture underlying 
physics that might remain undiscoverable using standard data-driven approaches. The 
incorporation of physics-based knowledge through the regularization process enhances the overall 
robustness and accuracy of the GPR model, making it well-suited for applications where sparse 
data and physics-based constraints coexist. Next, our attention is directed towards the commonly 
overlooked prior mean function in GPR modeling. Modelers often resort to employing a zero-prior 
mean, while inference predominantly relies on the kernel. However, we emphasize that both the 
prior mean and the kernel function are fundamental components of the Gaussian Process, and the 
model is fully defined by these two components. Upon thorough examination, we have discovered 
that the prior mean can play a crucial role in incorporating physics into the model. Through the 
incorporation of additional physical information alongside observation data, a meaningful physics-
based prior mean can be constructed, effectively aligning the GPR model with underlying physics 
and leading to improved prediction performance. In this study, we utilize the Physics-informed 
Neural Network (PINN) to estimate the prior mean function. We select PINN for its advantageous 
overparameterized characteristics, facilitating efficient objective function minimization, and its 
seamless integration and hybridization with GPR through backpropagation, enabling the 
reformulation of various physical constraints. Lastly, we introduce a novel kernel in GPR that 
effectively incorporates various types of physical constraints inherent in the system. This new 
kernel, referred to as the physics-infused kernel, is devised by assessing the model’s deviations 
from the established physical constraints at different input locations. By quantifying these 
violations within the system domain, we are able to rectify and fine-tune the covariance 
information between different outputs to align more closely with the underlying physics. The 
incorporation of this physics-infused kernel allows us to simultaneously consider both the data-fit 
and physics-fit of the model, resulting in a more comprehensive representation of the system. In 
different case studies with varying physical constraints, we show that the initially stationary data-
based kernel can be transformed into a non-stationary kernel when integrated with physical 
information, and the true data structure can be discovered by effectively reconstructing the 
covariance information in the model.
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