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In this issue of Neuron, Chiang et al. examine population coding of self-ordered sequences in prefrontal cor-
tex. They find better decoding, more distributed information, and less variability when order is consistent.
Consistent ordering produces reliable population response patterns that may aid planning and memory.
The tasks we perform in daily life

frequently rely on a series of related ac-

tions: for example, packing each item in

a bag when preparing for a trip. The steps

in these tasks can be executed in any

order, but must all be completed to suc-

cessfully reach the end goal. These tasks

impose a higher cognitive burden than

isolated actions, since they require us to

keep track of which steps have been

completed and which remain to be

done. Addressing this challenge effec-

tively may depend on the behavioral strat-

egy used for the task. If you use an estab-

lished sequence order—always putting

toothpaste in your suitcase after your

shoes—knowing which item you just

packed lets you know all those

completed. This strategy also always

gives you a prompt for the next item,

minimizing your chances of missing it.

Accordingly, well-trained animals will

often choose to execute repeated se-

quences, and settle on highly efficient

ones, even when there is no requirement

to do so (Desrochers et al., 2010).

Chiang et al. (2021) examine how popu-

lation activity in macaque lateral prefron-

tal cortex (LPFC) corresponds to behavior

in a self-guided sequential saccade task

(Figure 1A). In this task, monkeys were

presented with six targets at different

locations on the screen and moved their

eyes (saccaded) to each target without re-

peats, returning to a central spot between

each item. While monkeys performed

well, they often made errors later in the

sequence, returning to previously visited

targets—somewhat like packing a sec-

ond tube of toothpaste when you’ve

already put one in your bag. Error fre-

quency depended on monkeys’ behav-

ioral patterns across trials (Chiang and

Wallis, 2018). More consistent saccade
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sequences produced better performance,

and vice versa.

In a previous analysis, Chiang and

Wallis (2018) were left with a puzzle

as to how LPFC neurons were tuned

to target locations. Other experiments

have found that better behavioral perfor-

mance correlates with sharper tuning.

This phenomenon has been observed in

primary sensory cortices (Ollerenshaw

et al., 2014), high-level visual neocortical

areas (Britten et al., 1992), and, more

recently, the striatum during more effi-

cient sequential performance (Desroch-

ers et al., 2015). In contrast, Chiang and

Wallis found that less sharp spatial tuning

in LPFC correlated with better perfor-

mance and more consistent saccade se-

quences. These results reversed the pre-

viously observed relationship between

tuning and behavior, and raised the ques-

tion of how behavior in this task improved

when the specificity of single neuron re-

sponses decreased.

To address this puzzle, Chiang et al.

conducted an ambitious set of population

analyses. As they note, task performance

depends on the entire network of neu-

rons, not only single cells. The distribution

of activity across neurons affects popula-

tion-level information in ways that are not

obvious in single cells (Figure 1B) (Quian

Quiroga and Panzeri, 2009). Chiang et al.

used multi-class linear discriminant anal-

ysis (LDA) to evaluate howwell ensembles

of neurons could distinguish the target

location and sequence position of sac-

cades. LDA finds the weighted sum

of activity that best separates different

categories of data using all recorded neu-

rons. The resulting weights are then used

to ‘‘decode’’ individual target locations or

sequence positions, and the proportion of

correct classificationsmeasures the infor-
lsevier Inc.
mation about these variables in the popu-

lation response.

The results revealed a solution to the

neural tuning puzzle: decoding accuracy

was higher in more stereotyped se-

quences even though single-neuron

tuning was weaker. In other words, the

population as a whole had more informa-

tion about target locations and sequence

position when sequence order was more

consistent. Further, they found a wider

distribution of information across the pop-

ulation in stereotyped sequences: individ-

ual neurons had less influence, but a

greater number of them contributed to de-

coding, improving accuracy overall.

These results raised the question: what

neural response features affected decod-

ing accuracy and behavioral perfor-

mance? One possibility was population

response variability. Decoding relies on

the ability to separate response patterns

associated with different targets. Vari-

ability in responses to the same target

can blur the boundaries between cate-

gories, reducing accuracy and leading to

inconsistent classifications. The same

factor might affect information decoding

in the brain, contributing to behavioral er-

rors. The authors examined variability us-

ing population dimensionality and found

that it was higher for later sequence posi-

tions and less stereotyped sequences,

when animals’ performance was worse.

These differences were interpreted as a

signature of working memory load. This

explanation is appealing, because work-

ing memory load is presumably higher

later in the sequence with more previous

targets to recall. Consistent saccade

ordering may reduce that load: the asso-

ciation of a saccade target with a specific

time in the sequence could provide an

additional memory cue, and repeating
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Figure 1. Task and neural coding concepts from Chiang et al. (2021)
(A) Monkeys performed self-guided saccades to six targets, returning to a central spot between targets.
An analogous task, packing a suitcase for a trip, is also depicted (images from Vecteezy.com). In
commonly performed tasks, even ones like packing a bag that do not have an intrinsic order, repeating a
self-generated sequence can be advantageous.
(B) Higher-dimensional analyses provide information that is not available from single cells. A two-
dimensional case is illustrated: Neuron 1 responds strongly to targets A and B, while Neuron 2 responds to
targets B and C. Individually, neither neuron’s response can uniquely identify target B (histograms on top
and right axes), but when both neurons are combined in a two-dimensional space, all targets are easily
distinguished.
(C) Hypothetical responses across five sequence steps for consistent and inconsistent sequences. Colors
represent neurons with five different preferred targets (green, blue, red, yellow, and purple). When
sequence order is consistent (top), overlapping responses to past and future targets provide information
about the current state. For example, moderate activation in the blue and yellow neurons indicates that it is
the third step in the sequence and the current target is red. If order is random (bottom), each target can
come before or after any other, so overlapping activation is uninformative.
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saccade order may decrease interference

across trials.

Other factors may also contribute to the

observed differences in dimensionality.

Previous analyses from Chiang andWallis

(2018) showed that LPFC neurons encode

information about past and future sac-

cades in addition to the current target.

Such layering of information, where paral-
lel planning of multiple steps gives rise to

the appearance of differential coding, has

been observed in the frontal eye fields

(Basu et al., 2021) and motor cortex (Zim-

nik and Churchland, 2021). Responses to

previous and upcoming targets could

explain differences in dimensionality.

When target order is stereotyped, re-

sponses to past and future targets will
overlap with each other in consistent

ways on each trial (Figure 1C, top). These

activations can, in turn, provide an infor-

mative cue for behavior due to their

predictability. In contrast, when saccade

order varies, responses to past and

future targets will change across trials,

increasing variability in the response

pattern (Figure 1C, bottom). These signals

are then less informative for behavior and

decoding. Future work will be needed to

determine whether parallel processing of

past and future actions improves perfor-

mance during stereotyped sequences

and how this process interacts with work-

ing memory.

The results of this study raise important

questions about the nature of behavioral

sequences. In previous studies of action

sequences, animals’ strategies evolved

to become more stereotyped over time

(Desrochers et al., 2010). In contrast, ani-

mals in this study showed different de-

grees of stereotyped behavior across

sets, but their use of these strategies did

not appear to change with time. This

may be because the variety of displays

and their frequency of use did not

encourage more habit-like behaviors as

in Desrochers et al. (2010). Instead,

sequential performance in this task may

reflect a heuristic to simplify the repeated

performance of similar actions without

necessarily optimizing long-term effi-

ciency. This difference raises the

intriguing possibility that this task may

reflect a distinct element in the taxonomy

of sequential behaviors, opening a prom-

ising path for further research.

Along with these questions, there are a

few caveats to consider. First, decoding

methods impose categorical boundaries

that may not reflect the structure of data.

While not a critique of the current study,

this limitation will be important to keep in

mind for future experiments. Second, it

is unclear from the current study whether

the use of stereotyped sequences reflects

an explicit strategy, as opposed to

random variation or implicitly learned

behavior. This distinction may go beyond

semantics when considering that different

neural systems may be engaged in se-

quences that are executed implicitly and

explicitly. Despite these points of uncer-

tainty, these findings are important for

how we think about the relationship be-

tween neural coding and behavior in the
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frontal cortex and potentially elsewhere in

the brain.

Integrating these findings into the

context of broader cognitive processes

and neural systems will be a key direction

for future research. Elements of planning,

memory, and choice may all contribute to

the observed neural signals in LPFC, and

disambiguating these processes will be

important for understanding high-dimen-

sional data. LPFC is also connected

through well-known anatomical and func-

tional loops with basal ganglia structures

thought to be responsible for habitual be-

haviors (Graybiel, 2008). Apparent differ-

ences in tuning between the striatum

(Desrochers et al., 2015) and LPFC

(Chiang et al., 2021) during sequential ac-

tions may result from behaviors that are

not quite habitual, or, perhaps more

intriguingly, might be a feature of their

cooperative function. Sharper tuning in

single striatal neurons could give rise to

more distributed, flatter coding in the

LPFC that could be considered more

general and enable parallel planning. In

combination with causal manipulations,

answering these questions will be essen-
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tial for determining how components of

neural activity contribute to sequential

behavior and understanding how sequen-

tial behaviors are planned and executed.

Ultimately, this study raises new ways

that sequential behavior (goal-directed

or not) can aid behavioral performance,

connect to memory processes, and

shape the response structure of neurons

in the brain. Chiang et al. have decoded

the key to keeping track of the items we

put in our suitcases: following the same

order every time.
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In this issue of Neuron, Krause and Drugowitsch (2022) present a novel approach to classifying
sharp-wave ripples and find that far more encode spatial trajectories than previously thought. Their
method compares a host of state-space models using what Bayesian statisticians call the model
evidence.
Imagine you are navigating a large Scan-

dinavian furniture store. You find yourself

in the Children’s Rooms section with

who-knows-how-many miles to go before

checkout. It didn’t take so long last time

you were here... You recall weaving your

way through Kitchen and Dining into

Home Office and Children’s Rooms,

and then you remember. There was a

shortcut, hidden behind a brown-black
lacquered wardrobe, that led straight to

the exit!

What neural mechanisms might facili-

tate the recollection of past experiences

and the formation of mental models of

the environment? Rodents performing

spatial navigation tasks, albeit in less-en-

riched environments, seem to perform

similar mental computations. As animals

move through their environment, place
cells in the hippocampus fire in a spatially

localized manner to represent the ani-

mal’s current location. Every so often,

when the animal pauses, there are brief

bursts of spikes in the hippocampus

that give rise to sharp-wave ripples

(SWRs) in the local field potential. In a

fraction of SWRs, the burst involves a

sequence of spikes across neurons with

adjacent place fields. In other words,
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