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Monkeys engage in visual simulation to solve complex 
problems 
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Desrochers1,4,5, David Sheinberg1,4✉ 

Visual simulation — i.e., using internal reconstructions of the world to experience potential future 
versions of events that are not currently happening — is among the most sophisticated capacities of the 
human mind. But is this ability in fact uniquely human? To answer this question, we tested monkeys on 
a series of experiments involving the 'Planko' game, which we have previously used to evoke visual 
simulation in human participants. We found that monkeys were able to successfully play the game using 
a simulation strategy, predicting the trajectory of a ball through a field of planks while demonstrating a 
level of accuracy and behavioral signatures comparable to humans. Computational analyses further 
revealed that the monkeys' strategy while playing Planko aligned with a recurrent neural network (RNN) 
that approached the task using a spontaneously learned simulation strategy. Finally, we carried out 
awake functional magnetic resonance imaging while monkeys played Planko. We found activity in 
motion-sensitive regions of the monkey brain during hypothesized simulation periods, even without any 
perceived visual motion cues. This neural result closely mirrors previous findings from human research, 
suggesting a shared mechanism of visual simulation across species. In all, these findings challenge 
traditional views of animal cognition, proposing that nonhuman primates possess a complex cognitive 
landscape, capable of invoking imaginative and predictive mental experiences to solve complex everyday 
problems. 
 

Consider the following scenario: it’s a Monday 
morning, and you’re driving to work. You’ve taken this 
route dozens of times and can navigate without a 
second thought. Yet today, as you approach your 
destination, you encounter construction blocking your 
usual path. You stop, and start to think: “Maybe I could 
turn right here and head north on a parallel road? 
Although, that does lead to a one-way street. Perhaps 
I’ll have better luck if I take a left? That should take me 
past the bakery, around the school crossing, and 
eventually direct me back to my destination”. In just a 
few seconds, you have managed to simulate potential 
alternate paths and chart a new course for your 
journey. 

This process of problem solving via “mental 
simulation” takes place entirely in your head, without 
the need to move a single muscle. You can imagine 
how things might play out in the future to help you 
arrive at a solution. Importantly, you need not actually 
experience the things you are simulating (or their 

potentially negative consequences, such as going 
down a one-way street). Your internally generated 
mental recreations are sufficient to guide your actions. 
When harnessed effectively, mental simulation is one 
of the most sophisticated and useful cognitive 
capacities at your disposal. 

Mental simulations can take various forms. For 
instance, past research has shown that imagining 
bodily movements relies on a form of mental 
simulation, as indicated by the overlap in neural 
circuits involved in imagination and execution of motor 
actions. This phenomenon is referred to as "action 
simulation"1. Similarly, mental simulation strategies 
can also explain how we predict outcomes in physical 
scenes, such as the collapse of a Jenga tower2,3. In 
recent experiments, we have built upon previous 
intuitive physics studies to provide evidence for a 
specific type of mental simulation called visual 
simulation4,5. As the name implies, visual simulation 
involves imagined visual representations 
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corresponding to the objects involved in the mental 
simulation, similar to how action simulation involves 
imagined motor representations. In other words, visual 
simulation incorporates a distinctly visual component 
into the simulation process. Supporting this idea, we 
have developed a novel task called Planko (Figure 1) 
and demonstrated that when people are asked to 
predict the likely trajectory of a ball falling through an 
obstacle-filled display, their behaviors and eye 
movements indicate that they are simulating the ball’s 
path5. Furthermore, we have shown that during these 
simulations of the ball's trajectory, motion-sensitive 
brain regions like the middle temporal area (area MT) 
respond as if the ball's motion were being literally 
seen, even though the stimulus remains static 
throughout the simulation4. Collectively, these findings 
suggest that humans are indeed capable of visual 
simulation, and the neural correlates of this process 
can be observed in visual brain areas. 

Despite the growing body of behavioral and 
neuroimaging work on simulations in the brain, several 
questions about the underlying neural mechanisms 
that support these phenomena remain. Why is this? 
We suggest that a major obstacle to progress derives 
from the lack of a compelling animal model. The 
absence of research on mental and visual simulation 
in animals is not surprising, given the complexity, 

introspection, and subjectivity associated with these 
phenomena. While some recent evidence suggests 
that computational models of simulation align with 
nonhuman primate behavior, it remains unclear 
whether animals are capable of mental simulation, let 
alone visual simulation6. In our current experiments, 
we aimed to address these questions by replicating 
our human studies on visual simulation with 
nonhuman primates (NHPs). We found that when 
macaques play Planko, their behavioral patterns can 
be accurately accounted for by models assuming a 
simulation strategy. Using awake monkey fMRI, we 
further discovered that when monkeys engage in a 
simulation of the ball's trajectory, motion-sensitive 
brain regions become active, indicating an explicitly 
visual aspect of the simulation process. Previously, we 
provided evidence for these same findings with human 
participants. Together, these results demonstrate that 
monkeys not only possess the ability for visual 
simulation but also share the biological foundations of 
this capability with humans and other nonhuman 
primates. 
 
Can monkeys play Planko? 

We have developed a task paradigm called Planko 
to probe visual simulation. During the task, 
participants are shown displays (also referred to as 
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Figure 1: A - Examples of Planko boards used in the task. Monkeys were required to predict which catcher the ball would 
land in, if dropped. In the present example, the three boards in the left column lead to the left catcher, and the three boards 
in the right column lead to the right catcher. B - A schematic of one complete trial, including the pre-response period when 
the monkeys could potentially simulate the ball’s trajectory and the post-response period when they saw the ball fall. C - A 
diagram of the NHP upright rig setup that was used for training and behavioral testing on the task. Monkeys indicated their 
responses using one of the two provided buttons, and were given juice reward for correct responses. 
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boards) like the ones shown in Figure 1A and asked 
to predict which of the two bottom “catchers” the ball 
will end up in, were it to be dropped through a field of 
randomly arranged “planks”. While the participants 
make this prediction (i.e., during the “pre-response 
period”), the ball remains completely static, 
suspended in place. Once the participants indicate 
their choice with a button press, the ball is then in fact 
dropped during the “post-response period”, thus 
providing participants with feedback on their 
responses. While we have been successful in using 
this task to probe simulation in humans5, we wondered 
if monkeys would be capable of learning it, and if so, 
would they, too, rely on visual simulation?  

We thus set out to train two monkeys (referred to 
here as Monkey G and Monkey A) to play Planko. We 
started with extremely simple displays, containing very 
few planks (Figure 2B). During the early stages of 
training, we also introduced a “shadow ball” which 
would reveal a persistent, light gray trace of the ball’s 
trajectory on certain trials at random (Figure 2A). The 
shadow ball thus gave away the correct answer on 
these trials but was nonetheless a useful tool for 
demonstrating to the monkeys what they were 
expected to focus on (i.e., the ball’s trajectory). Over 
time, we gradually increased the number of on screen 
planks while simultaneously reducing the proportion of 
trials containing a shadow ball, as well as fading away 
the shadow ball such that it would reveal progressively 
lesser amounts of the ball’s trajectory (Figure 2A, 2B). 
We assessed training success by analyzing monkeys’ 
task accuracy on non-shadow ball trials. 

The progression of each monkey’s task accuracy 
through the aforementioned training (non-shadow 
trials only) is shown in Figure 2C. Initially, both 
monkeys struggled with the task whenever we 
attempted to increase the number of planks on the 
screen. This is especially apparent in the first 25 
sessions. For instance, while Monkey G was able to 
rapidly learn a one-plank version of the task, his 
performance fell back down to chance when shown 
boards with two planks. Similarly, Monkey A 
demonstrated a progressive reduction in task 
accuracy as we advanced from one to four onscreen 
planks. These setbacks suggest that, at least at first, 
both monkeys relied on strategies that were not robust 
to changes to the visual properties of the display. This 
pattern of behavior would not be expected were they 
relying on simulation to solve the task. Importantly, 

however, both monkeys eventually modified their 
approach such that changes to plank number no 
longer impacted their task accuracy, even when 
seeing a particular plank count for the very first time. 
This is most apparent in Figure 2C from session 25 
onwards, where we rapidly progressed from two to ten 
on-screen planks. This newfound invariance to the 
visual properties of the scene is striking and suggests 
that the monkeys were able to arrive at a more 
sophisticated strategy (like simulation) for solving the 
task (Supplementary Video 1). 
 
Behavioral Evidence for Simulation in Monkeys 

While we were encouraged by the fact that the 
monkeys were able to play Planko with higher than 
chance accuracy, that by itself does not provide 
compelling evidence that they were doing so by using 
simulation. We thus set out to ascertain whether their 
behavior on the task was in line with what might be 
expected, were they engaging in visual simulation. In 
our previous work, we have shown that human 
participants’ accuracy on the task depends on the 
degree of “simulation uncertainty” created by the plank 
configuration on any board (for details on simulation 
uncertainty, see Methods and Figure 2D/E). In the 
present study, monkeys were shown boards that fell 
into one of two discrete simulation uncertainty 
categories — low, or high (Figure 2F). We predicted 
that if monkeys were engaging in visual simulation, 
then their task accuracy would decrease as simulation 
uncertainty increased. Figure 2G shows both 
monkeys’ task performance as a function of simulation 
uncertainty (high vs low). As with humans (Figure 2J), 
we found that both monkeys were significantly worse 
at the task when simulation uncertainty increased 
(Monkey G: t190 = 2.75, p < 0.005; Monkey A: t190 = 
3.27, p < 0.005), suggesting that they were employing 
a simulation strategy to approach the task. 

We also compared monkeys' eye movements 
before and after their response on each trial. In the 
pre-response period, they made saccades while 
looking at the static image of the board. In the post-
response period, they followed the falling ball with 
smooth pursuit eye movements. Our goal was to 
determine if the eye movements made while trying to 
determine the ball's final position significantly 
overlapped with the eye movements made while 
perceiving the ball's actual falling trajectory (see 
Methods and Figure 2H). We predicted that if 
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monkeys were visually simulating the ball’s movement 
path to solve the task, then there would be significant 
overlap between pre-response and post-response eye 
movements. Figure 2I shows both monkeys’ overlap 

between pre and post-response eye movements, 
relative to overlap predicted by chance (see 
Methods). For both monkeys, we found that the 
degree of observed spatial overlap was greater than 

Figure 2: A - Examples of the “shadow ball” that was used to train the monkeys on Planko. Shadow ball trials were always 
intermixed with non-shadow ball trials. Over the course of training, the shadow ball gradually faded away until it (contd. ->) 
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chance (Monkey G: t239 = 3.49, p < 0.001; Monkey A: 
t240 = 4.17, p < 0.001), suggesting that they may have 
relied on visual simulation to arrive at the correct 
answer. This result also precisely mirrors what we 
have previously observed with human participants 
(Figure 2J). 
 
Computational Evidence for Simulation in 
Monkeys 

To develop a computational explanation for 
playing Planko using simulation and non-simulation 
strategies, we trained two neural networks: a shallow 
convolutional neural network (CNN) and a recurrent 
neural network (RNN) (Figure 3A). We opted for this 
approach because in previous work, we have shown 
that such networks (especially RNNs) are capable of 
spontaneously developing task strategies that 
resemble visual simulation7. The CNN architecture we 
used in the present study was based on a previous 
model used in our human research5, while the RNN 
model drew inspiration from neuroscience-inspired 
motion perception models8. Despite inherent 
architectural differences, we attempted to match the 
parameters of both networks for consistency. Figure 
3B displays the task accuracy of each network when 
tested on the same boards as Monkey A and Monkey 
G. Like the monkeys, both networks achieved task 
accuracy greater than chance (CNN: t382 = 15.39, p < 
0.001; RNN: t382 = 25.27, p < 0.001). 

Having established that neural networks could 
predict the ball’s final catcher, we aimed to understand 
the strategy employed by the two networks by probing 
the activity of their hidden layers (Figure 3C). The top 
row shows activity maps of both networks, while the 
bottom row presents the activity maps overlaid with 
the original board. At first glance, the CNN's activity 
predominantly appears to represent the spatial 
properties of the planks. Conversely, the RNN seems 
to focus on the ball's trajectory rather than the planks 
themselves. Notably, the RNN naturally emerges with 
this trajectory representation, despite not explicitly 
requiring or being trained to do so. This observation 
aligns with the behavior one would expect from a 
system relying on simulation. 

To quantitatively confirm these impressions and 
investigate whether either the CNN or RNN had 
represented the ball's trajectory, we trained 16 position 
decoders to predict equidistant points along the 
trajectory. We used the hidden layer activity from each 
network to assess if these representations contained 
information about the ball's path. As a control, we 
repeated the decoding process using the board 
images themselves, which explicitly lack path 
information (Figure 3D). Comparing the decoder 
outputs to the ground truth trajectory, we found that 
several of the RNN-trained decoders made better 
predictions that were closer to the ground truth points 
than the null-trained decoders. Specifically, significant 
results were observed for 12 of the 16 decoders after 

(contd. ->) revealed none of the ball’s trajectory, in the hopes that monkeys would continue to extrapolate the ball’s 
trajectory, even  when not given. B - Examples of various onscreen plank counts that were used during training. Both 
monkeys began with one plank boards and were gradually progressed along until they were able to navigate ten onscreen 
planks. C - The progression of each monkey’s task accuracy across multiple training sessions in which onscreen planks 
were progressively increased (non-shadow ball trials only). Both monkeys initially struggled with increasing plank numbers, 
before arriving at a generalizable strategy that allowed them to maintain consistent task accuracy. D - An example of a board 
where slightly jittering the position of each plank (three jittered examples j2,3,4 shown with the original j1 underlaid) had a 
minimal impact on the ball’s final position. Outcome changes were assigned a penalty (in this example, only penalties of 0 
were assigned), and used to calculate a simulation uncertainty score. Boards like this one were classified as having a low 
simulation uncertainty. E - An example of a board where slightly jittering the position of each plank (three jittered examples 
j2,3,4 shown with the original j1 underlaid) had a significant impact on the ball’s final position. Outcome changes were assigned 
a penalty between 0 and 1 and used to calculate a simulation uncertainty score. Such boards were classified as having a 
high simulation uncertainty. F - A histogram of all the simulation uncertainty scores  assigned to boards from the two 
monkeys’ task test days. G - Task accuracy for Monkey G and Monkey A as a function of simulation uncertainty. Both 
monkeys were affected by this metric, suggesting that they might be using a simulation strategy. H - A schematic depicting 
the analysis of eye movement overlap between pre-response and post-response trial periods.  I - Eye movement spatial 
overlap for Monkey G and Monkey A, relative to a shuffled chance. Both monkeys showed a higher than chance degree of 
overlap between pre and post response eye movements, consistent with a simulation strategy. J - Data from G and I 
compared to past findings from human subjects. Both monkeys showed behavioral and oculomotor trends that are in line 
with what we have previously observed in humans (see text for details). 
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applying Bonferroni correction for multiple 
comparisons (Figure 3E; see Supplementary Table 1 
for detailed statistics). It is also notable that the 
divergence in prediction ability between the RNN and 
null-trained decoders appears to be most pronounced 
towards the latter half of the ball’s trajectory, where the 
variability in the ball’s hypothetical position is highest.  

In contrast, only one of the CNN-trained decoders 
made better predictions than the null-trained 
decoders. Instead, most of the CNN-trained decoders 

made similar predictions to the null-trained decoders 
(Figure 3E; see Supplementary Table 1 for detailed 
statistics). These findings confirm our initial suspicion 
from the activity maps in Figure 3C — that the RNN 
represents the ball's trajectory, consistent with a 
simulation-based approach, while the CNN adopts an 
alternate strategy based on the statistical regularities 
of the planks. 

Finally, we analyzed whether the boards that 
caused the highest uncertainty for the networks 
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Figure 3: A - Examples of two types of networks, a feedforward convolutional neural network (CNN) and a feedback 
recurrent neural network (RNN) that were trained to solve the Planko task. B - Each network’s task accuracy when tested 
on the same board sets from the monkeys’ task test days. Like the monkeys (MG and MA), both networks achieved above 
chance accuracy. C - A heat map showing the average activity of the hidden units on an example board for both the CNN 
and the RNN. The second row shows the same activity again, but with the input board image overlaid. D - A schematic 
depicting how we quantified whether the ball’s trajectory was represented in the network hidden layer activity. E - Average 
RMSE values for each predicted vs actual position for the CNN and RNN trained decoders, relative to the board image 
trained (null/chance) model. While the CNN trained decoders almost never achieved greater than chance prediction 
accuracy, the RNN trained decoders consistently predicted the position of the ball with a high degree of accuracy. F - Network 
uncertainty for the CNN and the RNN as a function of whether each monkey gave the correct or incorrect response on a 
given board. The CNN’s average network uncertainty was no different for boards that the monkeys got correct vs boards 
that they got incorrect, whereas the RNN’s average network uncertainty was significantly higher on boards that the monkeys 
got incorrect compared to boards they got correct. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2024. ; https://doi.org/10.1101/2024.02.21.581495doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.21.581495
http://creativecommons.org/licenses/by-nc-nd/4.0/


corresponded to the ones on which the monkeys 
made mistakes. We did this to determine which 
network approach, simulation-like (RNN) or not 
(CNN), best aligned more with monkey behavior. By 
calculating each network’s board-wise uncertainty 
(see Methods), we found that the RNN displayed 
significantly higher uncertainty on boards where 
monkeys responded incorrectly compared to those 
where they answered correctly (Monkey G: t190 = 3.79, 
p < 0.001; Monkey A: t190 = 2.35, p < 0.05). This result 
suggests that the monkeys struggled with the same 
boards for which the answer was unclear to the RNN. 
Conversely, we found that the CNN exhibited no 
significant difference in certainty between boards that 
the monkeys got correct compared to the ones they 
got incorrect (Monkey G: t190 = 1.31, p = 0.18; Monkey 
A: t190 = 1.21, p = 0.22), suggesting that the CNN and 
monkeys struggled with distinct boards. Overall, this 
result indicates that the RNN's simulation-like task 
approach (as depicted in Figures 3C-3E) successfully 
captures the monkeys' approach whereas the CNN’s 
plank analysis approach does not, supporting the idea 
that the monkeys also engaged in simulation. 

 
Neural Evidence for Visual Simulation in Monkeys 

In the previous experiments, we laid the foundation 
for the idea that monkeys may possess the ability to 

engage in simulation. To investigate whether these 
simulations are indeed visual, we recorded neural 
responses from the monkeys using an MRI scanner 
while they played Planko. We achieved this by training 
the monkeys to play Planko in a setup novel to the 
monkeys — seated in a horizontal chair in the sphinx 
position. Our primary hypothesis was that the neural 
circuits involved in perceiving the falling ball would 
also be activated during visual simulation. Based on 
prior human evidence, we predicted that a) motion-
sensitive brain regions would be active while the 
monkeys simulated the motion trajectory of the ball, 
and b) that this activity would bear voxel-wise pattern 
similarity to periods when the monkeys actually 
perceived the ball falling. 

To assess these predictions within the MRI 
environment, we first defined a region of interest (ROI) 
that was sensitive to motion. We carried out a motion 
localizer task (see Methods) at the beginning and end 
of each scanning session, in which the monkeys 
fixated on a central yellow dot while a field of white 
dots either flickered or moved coherently in the 
background (Figure 4B). Any brain regions exhibiting 
stronger responses to moving dots compared to 
flickering dots, including well-known areas involved in 
motion processing such as area MT, MST, and V4d 
(Figure 5A), were deemed motion-sensitive. For 
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Figure 4: A - A diagram of the NHP fMRI setup. Monkeys were seated in the “sphinx” position and placed inside the scanner, 
where they viewed a screen at the end of the bore and indicated their response using MRI compatible button boxes.  B - A 
schematic of the motion localizer task we used to isolate motion sensitive ROIs. C - A schematic of the three variants of the 
main Planko task that monkeys were trained to perform inside the scanner. D - An example of one complete scanning 
session, containing motion localizer blocks at the beginning and end, and several blocks of each task variant randomly 
interspersed throughout (grey regions indicate interblock intervals). 
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subsequent analyses related to the main Planko task, 
we focused specifically on these motion-sensitive 
brain regions as our ROI (Figure 5D). 

To accommodate the spatial and temporal 
characteristics of the signals acquired in the scanner, 
we created three distinct task variants of Planko that 
were administered in a blocked pattern (Figure 4C, 
4D). The first variant, referred to as the "simulation 
variant," served as the primary experimental condition. 
In this variant, monkeys were presented with a series 
of boards and were asked to predict the final catcher 
for the ball. However, unlike the original Planko task, 
immediate feedback regarding their choice was not 

provided. We intentionally removed feedback 
regarding the ball's trajectory to ensure that monkeys 
did not perceive any onscreen motion throughout the 
simulation block. This design choice was crucial to 
ensure that any activity related to motion perception 
would not be mistakenly attributed to simulation. 
Consequently, we introduced a new "perception 
variant" that served as a positive control. In the 
perception variant, monkeys were not required to 
predict the ball's trajectory; instead, as soon as the 
board appeared on the screen, the ball automatically 
began to fall. The monkeys were then tasked with 
retrospectively reporting the catcher in which the ball 
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Figure 5: A - The result of the Motion > Flicker contrast from the  motion localizer task. We observed activity in canonically 
motion-sensitive brain areas, such as MT, MST, V4d, and 45b. B - The result of the Perception > Control contrast from the 
Planko task variants. Once again, we observed activity in many of the same motion-sensitive areas, such as MT, MST, and 
V4d. C - The result of the Simulation > Control contrast from the Planko task variants. Here too, we observed striking activity 
in motion-sensitive areas such as MT, MST, and V4d. D - A depiction of the motion-sensitive ROI that were used for 
subsequent representational similarity analyses. All voxels that survived cluster correction at a p < 0.05 FWE threshold were 
selected. E - A schematic showing our main comparisons of interest. We compared the pattern of activity (relative to 
baseline) in the Simulation condition to both the Perception condition (S-P) and the Control condition (S-C). G (Left) - A 
comparison of S-P and S-C representational similarities. As with the human participants in our previous study (Ahuja et al., 
2022), Monkey G’s data also showed an elevated voxel-wise pattern similarity for the S-P comparison relative to the S-C 
comparison. (Right) S-P — S-C similarity for human participants and Monkey G.  
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landed. By examining neural responses within our 
defined ROI from this task variant, we established a 
template for motion-related activity associated with the 
ball's trajectory. This template served as a basis of 
comparison for the simulation-related activity 
observed in the previous variant. 

Additionally, we developed a "control variant" to 
serve as a negative control condition. In this variant, 
monkeys were presented with static boards (similar to 
the simulation variant). However, unlike the previous 
variants, monkeys' responses were no longer 
dependent on the ball's trajectory. Instead, the 
orientations of the planks on the screen were 
manipulated to be predominantly horizontal or 
predominantly vertical. Monkeys were required to use 
the orientation property to provide a response (e.g., 
pressing left for mostly horizontal or pressing right for 
mostly vertical). Hence, in this variant, monkeys' 
subjective experience during the task closely 
resembled that of the simulation variant (i.e., making 
decisions about a static board during naturalistic free 
viewing). However, the cognitive processes employed 
were no longer related to predicting the ball's motion 
trajectory.  

The experimental design described above is 
consistent with our past human research4. 
Unfortunately, during the course of scanning, one of 
the monkeys developed a fear response to the MRI 
machine, which meant that only one of the two animals 
(Monkey G) adapted to the altered environment of the 
scanner. The subsequent results thus all belong to 
Monkey G but are contextualized relative to our 
previous human findings.  

Our results revealed two significant findings. 
Firstly, within the motion-sensitive ROI, we observed 
increased activity during the perception variant 
compared to the control variant (Figure 5B). This 
finding is expected, since the monkeys viewed the 
falling ball in the perception variant, whereas no 
motion was present on screen during the control 
variant. Strikingly, however, we also found increased 
neural activity in these same motion-sensitive brain 
regions during the simulation variant relative to the 
control variant, despite the absence of any onscreen 
motion in the simulation variant (Figure 5C). The key 
distinction between the simulation and control variants 
lies in the fact that the monkeys engaged in a 
simulation of the ball's trajectory exclusively during the 
simulation variant (and only performed orientation 

discrimination during the control variant). It thus 
appears that the act of simulating the ball's path is 
capable of eliciting activity in motion-sensitive brain 
areas, as would be expected in the case of visual 
simulation. Complete activation coordinates for the 
motion localizer task and Planko task variants can be 
found in Supplementary Tables 1 - 3. 

Second, we used representational similarity 
analyses (RSA) to conduct a comparison of voxel-
level activity patterns between the simulation variant 
and both the perception and control variants (Figure 
5E). Our goal was to examine whether the activity 
patterns in the simulation variant exhibited a greater 
resemblance to those in the perception variant 
compared to the control variant. Such a pattern 
resemblance would support the notion that the 
observed activity during the simulation variant was 
indeed related to a simulation of the ball's motion. We 
found this to be the case, observing a higher pattern 
resemblance between the simulation and perception 
variants (r = 0.45, p < 0.001), compared to the pattern 
resemblance between the simulation and control 
variants (r = 0.2, p < 0.001) (Figure 5G). Since only 
one monkey was able to perform the task in the 
scanner, we assessed the robustness of this result by 
analyzing how consistent it was with our previous 
human findings showing evidence of visual simulation. 
To this end, we pooled the monkey and human results, 
and then carried out a series of leave-one-out t-tests 
where one set of observations (either human or 
monkey) was excluded. Across all iterations, we 
observed a consistent effect size (d = 1.76; SD = 0.14) 
irrespective of the identity of the excluded observation, 
indicating a stable and robust effect that was 
comparable between humans and monkeys. 
Additionally, all t-tests yielded significant differences 
(p < 0.001 for all), further supporting the reliability of 
our monkey results. Collectively, these findings 
provide compelling evidence that the simulation of the 
ball's trajectory in monkeys evokes perception-like 
activity in motion-sensitive brain regions, supporting 
the notion that, like humans, nonhuman primates may 
be capable of visual simulation. 

 
Discussion 

The results of our study represent significant 
advancements in understanding nonhuman primate 
cognition, both behaviorally and neurally. 
Behaviorally, monkeys demonstrated remarkable 
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proficiency in the complex Planko game, showcasing 
not just an understanding of its mechanics but also 
employing a sophisticated strategy beyond mere 
gestalt-style stimulus response mappings. This 
behavior also aligns with the performance of a 
recurrent neural network (RNN) that represents the 
ball’s trajectory in the activity of its hidden layers, 
further suggesting that monkeys were engaged in 
mental simulation. Neurally, we observed notable 
activation in the motion-sensitive region when 
monkeys mentally simulated the ball's trajectory, 
mirroring the neural activity seen when they saw the 
ball move – a result consistent with previous human 
studies. Such similar patterns of neural activity during 
both perceived and simulated events suggests that 
monkeys are capable of visual simulation, highlighting 
the profound capacity of their brains to emulate or 
predict sensory experiences without external stimuli. 

Historically, visual simulation — a cognitive 
process akin to imagination that can be used to predict 
and plan for the future — has primarily been studied in 
humans. Nonetheless, the notion that animals might 
be capable of some form of simulation has gained 
prominence in recent years.  For example, studies on 
action simulation have suggested that mirror neurons 
in the motor cortex can internally mimic observed or 
inferred actions9,10, while studies on intuitive physics 
have demonstrated that when monkeys are asked to 
intercept a moving virtual ball, their behavior on the 
task is consistent with a simulation strategy11,12. Mazes 
have also been used to explore simulation in animals. 
In the visual domain it has been shown that when 
monkeys are asked to determine the location of the 
maze’s exit, spatially tuned neurons in parietal area 7a 
respond with vectors consistent with the path to the 
solution13. Similarly, rodents trained to physically 
traverse a maze are known to exhibit patterns of 
neural responses in the hippocampus that reflect the 
animal’s upcoming path, as if the animals were 
simulating their future journey14,15.  

Despite these previous pieces of evidence hinting 
at simulation abilities in animals, definitive conclusions 
have been elusive due to the complexity and 
introspection associated with this cognitive process. 
Moreover, the simplicity of past paradigms has often 
left room for alternative interpretations, such as 
memory recall instead of active simulation. For 
instance, recent studies revisiting hippocampal replay 
in rodents question the idea that the observed patterns 

of neural responses reflect future progression through 
the maze16, especially since such experiments 
necessarily re-use previously trained mazes. Similarly, 
in previous maze studies with monkeys, the maze’s 
exit was generally found within one direction change, 
making it hard to read out a true, temporally extended 
simulation. The same can be said about intuitive 
physics research with primates, as the tasks used in 
these studies usually involve “simulating” two direction 
vectors at most, at least one of which is often shown 
at the beginning of each trial. 

In the present study, we addressed several of 
these limitations. For instance, the configuration of 
boards on each trial was completely novel,   limiting 
the potential influence of past memory. The ball’s 
trajectories were also complex, incorporating several 
motion vectors from start to finish. Finally, no 
information about the ball’s path was provided (even 
in the early stages of each trial) leaving it entirely up 
to the monkey to determine the complete solution. Our 
findings are thus derived from a more challenging 
experimental paradigm than used in previous studies 
and bolster the sparse, existing literature on animal 
simulation while also introducing the possibility that 
such simulations are characterized by an imagery-like 
visual aspect. 

The Planko task we have used relies on some 
understanding of physics, at least at an intuitive level.  
Based on the current data, we cannot say for sure 
whether monkeys’ ability to learn the task was driven 
by prior experience, or an innate core understanding 
of the physical properties of the real world.  Our choice 
of physics as a testbed, however, was less a matter of 
emphasizing the role of physics, and more motivated 
by the need to create a system where simulation could 
be easily moved between a computational and 
behavioral space.  As a first step, we limited the 
physical worlds to simple rigid body interactions 
between a falling ball and a series of static planks.  
Extending these worlds to include constraints like 
joints and gears or other dynamic forces could induce 
even richer internal simulations than those explored 
here. 

Further, if one accepts that humans and other 
animals carry out internal mental simulations, as our 
data suggest, then it is important to ask if that holds for 
simulation environments not rooted in actual physics.  
Our task could be extended to non-physics based 
worlds, including arbitrary rule based systems or 
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social interactions.  Indeed, from a cognitive science 
perspective, mental simulation has generally been 
associated with the ability of one to simulate the 
thoughts and planned actions of others17–19, providing 
one means by which humans, and possibly other 
animals, can predict how others might act in a 
particular situation.  While our study focused on 
predicting the action of an inanimate ball in a highly 
simplified environment, it remains important to 
understand if a similar process may underlie monkeys’ 
ability to predict the thoughts and actions of other 
animate entities. 

Our use of functional neuroimaging in this and a 
previous study4 provide one window into the internal 
process by which people and monkeys may visually 
simulate events in the world.  This method has many 
well-known advantages, including its non-invasive 
nature and its whole brain view.  At the same time, it 
leaves many questions unanswered. Given the spatial 
and temporal limits of fMRI, we cannot say how 
detailed the sensory activation in motion areas is.  
Recordings from populations of the individual neurons 
in these activated regions could, however, be used to 
provide a real time readout of the internal state of the 
simulation in order to directly explore the detailed 
circuitry supporting this ability. 

A significant limitation of the present study was the 
analysis of neural data from only one animal, despite 
successfully training two for the Planko task. This 
issue, while notable, does not substantially detract 
from the value of our findings, considering the 
challenges inherent in monkey research and the small 
sample sizes typically involved. The neural findings 
observed align closely with past human fMRI research 
on visual simulation, underscoring the reliability of the 
results despite the limited data set. Another limitation 
is the extensive training required for monkeys to 
achieve high task accuracy. This raises concerns 
about the impact of experience on the likelihood of 
engaging in visual simulation. However, training is an 
indispensable part of teaching cognitive tasks to 
monkeys. An interesting future research direction 
could be to explore whether prolonged practice or 
long-term exposure influence any neural or behavioral 
effects related to simulation. 

In conclusion, our study using the Planko game 
demonstrates more than monkeys' understanding of 
game mechanics; it reveals their capacity for mental 
simulation to predict outcomes. This insight is a 

significant leap in comprehending the relationship 
between the visual brain and mental experience in 
nonhuman primates. Moving beyond traditional 
studies focused on simplified tasks, our findings 
suggest that animal cognition might encompass 
complex thought processes akin to human 
experiences, involving contemplation, simulation, or 
even 'imagination' of potential scenarios. This 
revelation challenges our current understanding of 
animal intelligence, indicating that monkeys, and 
possibly other animals, can weave together past 
experiences, current observations, and future 
possibilities. It opens new avenues in cognitive 
neuroscience, hinting at a rich, imaginative mental 
landscape in the animal kingdom. As we continue to 
explore these capabilities, we deepen our 
understanding of the diverse spectrum of intelligence 
across species, bridging the gap in our 
comprehension of cognitive processes in the animal 
world.  
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Methods 
Subjects and Surgical Procedures 

Two adult male rhesus macaque monkeys 
(Macaca mulatta; Monkey A and Monkey G) were 
included in the study. Both monkeys weighed 
approximately 15kg. Each monkey was surgically 
implanted with an MRI-safe Peek headpost to help 
reduce head motion in the behavioral and MRI 
experimental setups. Surgeries were performed under 
isoflurane anesthesia, in accordance with the 
guidelines published in the National Institutes of 
Health Guide for the Care and Use of Laboratory 
Animals. Surgical procedures were approved by the 
Brown University Institutional Animal Care and Use 
Committee. 

 
Behavioral Experimental Design 

Both monkeys were trained to perform the Planko 
task (as described in Figure 2A-C). Following training, 
we carried out behavioral test days with each monkey 
during which they were shown 192 unique boards over 
the span of 6-8 blocks from 3 sessions. Each trial 
began with the presentation of a fixation point, 
following which a Planko board consisting of one ball, 
ten pseudo-randomly arranged planks, and two 
catchers was presented on screen. Monkeys had to 
determine which of the two catchers, left or right, the 
ball would fall into, were it to be dropped. Monkeys 
indicated their choice with a button press. The ball was 
then in fact dropped, revealing the correct answer. 
Once the ball landed in its catcher, correct responses 
were rewarded with a few drops of juice. The 
proportion of boards on which the ball fell into the left 
or the right catcher was matched (i.e., 0.565 for each). 
We used an Eyelink-1000 camera (SR Research) to 
track monkeys’ eye movements for the entirety of the 
session. Eye position was sampled at 1 kHz and 
stored to disk at 200 Hz. 
 
Simulation Uncertainty Analysis 

To explore simulation uncertainty, we modeled the 
potential for different ball trajectories on each board by 
introducing positional jitter to the planks and 
recalculating the ball’s path with a physics engine, as 
shown in Figures 2D and 2E. Some boards showed 
significant path deviations with slight plank jitter, while 
others were unaffected. We used this data to calculate 
a metric for simulation uncertainty by jittering and 

recalculating the ball's path 500 times for each board, 
then measuring how often the jittered configurations 
resulted in a different outcome. Boards were then 
classified as low or high uncertainty based on these 
outcomes, with the results transformed into a 0-100 
scale. 
 
Eye Movement Analysis 

To assess whether monkeys’ eye movements 
were suggestive of a simulation strategy, we 
compared their pre-response eye movements (i.e., 
during hypothesized simulation) to their post-response 
eye movements (i.e., during perception of the falling 
ball). It is important to note, however, that eye 
movements in the pre-response period occurred with 
a static board presentation, leading to only saccades, 
while those in the post-response period involved both 
saccades and smooth pursuit. Due to the distinct 
nature of saccadic (ballistic) and smooth pursuit 
(continuous) movements, we did not use traditional 
oculomotor metrics such as timing and velocity for 
comparison. Instead, we overlaid the eye movement 
traces from the pre-response and post-response 
epochs on top of one another, and then calculated the 
ratio of the intersection and the union of their areas 
(Figure H).  

Notably, this methodology of measuring similarity 
does result in some incidental spatial overlap even for 
eye movement traces that are entirely unrelated to one 
another. We used this form of incidental spatial 
overlap to quantify a chance intersection level. We did 
this by randomly shuffling the post-response eye 
movements across trials and recalculating spatial 
overlap on mismatched pairs of traces. We 
implemented this shuffling protocol for each monkey 
50 times and averaged the resulting incidental overlap 
values on each trial for each iteration. Subsequently, 
we ended up with a distribution of 50 chance overlap 
values per monkey. We then compared this 
distribution to the actual, observed degree of overlap 
between pre-response and post-response eye 
movements. 
 
Deep Neural Network Analyses 

We trained a simple feedforward 2-layer 
convolutional neural network (the “CNN") and the 
Index-and-Track (InT) circuit8 (the “RNN”) each 
designed to have around 100K parameters. InT 
incorporates insights from primate neural circuits 
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implicated in object tracking and has been shown to 
be more performant and correlated to human behavior 
compared to vanilla RNNs. The RNN consisted of an 
input layer, the InT circuit layer and finally the readout 
layer. The input layer had 64 1x1 convolutional filters, 
the InT circuit had 64 3x3 recurrent kernels mimicking 
the lateral connections found in the visual cortex. 
Finally, the readout was a linear layer that transformed 
the final RNN hidden state to the classification output. 
The RNN was trained for T = 24 time steps. The CNN 
was entirely feedforward with a layer of 3x3 
convolutional filters followed by  a readout layer similar 
to the RNN. 

Both models were trained using the Binary Cross 
Entropy (BCE)  training objective to classify each 
Planko board into one of either “left” or “right” classes. 
Model parameters were optimized with Stochastic 
Gradient Descent implemented via the Adam 
algorithm (Kingma & Ba, 2014) with an initial learning 
rate of 3e-4. Planko boards were of size 64 x 64 pixels 
with 200K boards for training and 5K boards for testing 
the models. Training was carried out on a NVIDIA 
TITAN Xp GPU for 100 epochs while measuring 
validation accuracy after each epoch over a held-out 
set of 10K boards. 

To test if the models had learnt to represent the 
ball’s trajectory, we trained 16 position decoders to 
predict the position of the ball along the trajectory. For 
both the CNN and RNN, after training the models to 
classify the boards, their weights were frozen and the 
hidden state activities elicited by the 200K training 
boards were recorded. These activities were fed into a 
model with three layers of 1x1 convolution and pooling 
operations and finally a linear layer to obtain the final 
predicted position. For the control (“null trained 
decoder”), these same decoders were trained to 
predict the ball positions directly from the 200K Planko 
training boards. The decoders were trained to 
minimize the mean squared error between the 
predicted ball position and the ground truth position 
derived from the physics engine. Like before, the 
decoders were trained via Stochastic Gradient 
Descent and were tested on 5K unseen boards. 

Finally, we used the networks’ uncertainty on each 
board to ascertain which network’s strategy better 
aligned with monkey behavior. To determine 
uncertainty, we performed confidence calibration 
(following training) using temperature scaling20. This 
calibrated probability (P(L) and P(R) for “left” and 

“right”, respectively) was used to define the 
uncertainty for a board as 1 - |PL - PR|. Using this 
measure on both the CNN and the RNN, uncertainty 
was calculated for each of the boards on which 
monkey data was collected (the neural networks were 
not trained on these boards). Finally, the network 
uncertainty ascribed to the boards was averaged 
based on whether the monkeys made an accurate 
response on said board. That is, we asked if the 
boards with high network uncertainty scores from a 
particular neural network were also the ones that the 
monkeys got incorrect, and vice versa.  
 
Motion Localizer and Planko Task Variant Design 

Localizer runs started with a 16-second lead-in 
period with only a yellow fixation point on screen with 
a black background. Monkeys fixated on the point for 
the entire 16 seconds. This was followed by randomly 
ordered 20-second blocks of white dots that either 
coherently moved in a given direction (i.e., the Motion 
condition), or flickered on and off (i.e., the Flicker 
condition). During the Motion and Flicker conditions, 
the yellow fixation point remained on screen, and 
monkeys were required to continue fixating (while 
ignoring the white dots in the background). The white 
dots were presented in a circular area with a radius of 
6 degrees visual angle around the yellow fixation 
point. White dots were 0.07 degrees visual angle in 
size and had a density of 69/degrees2. During the 
Motion condition, the white dots moved at 5 
degrees/second, randomly changing direction once 
per second. Monkeys were rewarded for maintaining 
fixation, which they did for the entirety of each localizer 
block. 

Task variant runs (Simulation, Perception, and 
Control) were broken down into blocks of 32 trials 
each, starting and ending with a 16-second fixation 
period. Task variant identity was cued by the color of 
a fixation spot that was presented at the start of each 
trial. Monkeys were successfully able to task switch 
between variant types, even within a single session. 

 
fMRI Scanning Procedures 

Monkeys were positioned in an MR-safe chair in 
the "sphynx" stance, with heads secured using a 
surgically implanted headpost affixed to the chair's 
arm. To minimize movement, the chair was padded 
with Polyethylene foam. Two floor buttons enabled the 
monkeys to register their task responses. During the 
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task, monkeys wore earplugs to counteract MRI 
background noise. 

Prior to scanning, monkeys were administered a 
contrast agent (MION) intravenously to enhance 
SNR21–23. Imaging occurred on a Siemens 3T PRISMA 
MRI system using a custom six-channel coil. Each 
session began and concluded with a T1-MPRAGE 
anatomical image, followed by functional images 
captured through a specific gradient-echo echo-planar 
sequence. A 24-inch MRI safe screen displayed the 
visual stimuli. 

 
fMRI Data Analyses 

Task activity on Planko variants was analyzed 
using a General Linear Model. The expected BOLD 
response during the pre-trial period was modeled 
using a boxcar regressor from stimulus onset to 
participant response. This model was adjusted for 
varying reaction times, ensuring the accurate 
representation of the BOLD signal for each trial 24–26. 
The first two trials in each run and trials with outlier 
reaction times were treated as nuisance regressors. 
Similarly, nuisance regressors for trials with outlier 
reaction times, six motion estimates (translation and 
rotation), and run identity were also included in the 
model. After these were integrated with the HRF-
convolved task regressors, beta and t-statistic values 
for the task variants were obtained. 

After having derived activity estimates for all 
variants, we conducted a Representational Similarity 
Analysis (RSA) to compare variants to one another. In 
this study, we used voxel-wise t-statistics for each 
variant (contrasted against baseline) within a motion 
sensitive ROI as the activity estimates due to their 
demonstrated reliability for RSA 27. We chose the 
Spearman correlation as our similarity metric, 
calculating the degree of similarity between the 
Simulation and Perception conditions (S-P), as well as 
the Simulation and Control conditions (S-C). The 
observed S-P and S-C similarities were then directly 
compared to one another. 
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