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Abstract

We offer fairly simple and direct proofs of the asymptotics for
the scaled Kramers-Smoluchowski equation in both one and higher
dimensions. For the latter, we invoke the sharp asymptotic capacity
asymptotics of Bovier-Eckhoff-Gayrard—Klein [B-E-G-K].

1 Introduction

The simplest one-dimensional version of the scaled Kramers-Smoluchowski
PDE has the form

pi = (b + ¢ 2p ), (1.1)

for the chemical density p¢ = p(£,t), where & = () is an even chemical
potential having two wells, say at the points £1. Formal asymptotics suggest
that if the time ¢ is rescaled by an appropriate factor 7., then

Pt — ad_y + B0y
as € — 0, where a = «a(t) and § = [(t) solve the system of ODE
o = k(8- a)
' = k(a = p)
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for an appropriate Kramers rate constant x, computed in terms of ®. Consult
Berglund [B| for much more about Kramers’ formula.

This asymptotic problem has in recent years been treated by several
teams of authors. An interesting paper by Peletier-Savare-Veneroni [P-S-V1]
(rewritten as [P-S-V2]) provides rigorous proofs, allowing also for diffusion
effects in other spatial variables x. Their approach invokes ideas of I'-
convergence. Later Herrmann and Niethammer [H-N] pointed out that the
['-convergence perspective was not really needed, and instead interpreted
(1.1) as a gradient flow on the Wasserstein space of probability measures.
Their proofs in fact do not really use the Wasserstein viewpoint very much,
relying instead on a Raleigh-type dissipation functional. S. Arnrich et al in
[A-M-P-S-V] revisit this problem, providing a complete interpretation of the
dynamics as providing a curve of maximal slope for a Wasserstein gradient
flow.

In this paper we provide an even greater simplification, requiring nothing
abstract at all. We instead just build a simple test function (see (2.27)),
integrate by parts and use some fairly easy estimates. (Our auxiliary function
¢° is however strongly related to the analysis in Section 5.3 of [P-S-V2] on
“minimal transition costs”.) The direct technique is robust, and generalizes,
with some difficulties, to higher dimensions for the chemical potential variable
&, In this setting we need the sharp asymptotic capacity asymptotics of
Bovier-Eckhoff-Gayrard-Klein [B-E-G-K].

We thanks the referees for their careful readings and comments, and in
particular for spotting an error in a proof in the first version of this paper.

2 Kramers-Smoluchowski in one dimension

We assume that & : R — R, & = ¢(¢), is a smooth, nonnegative and even
double-well potential function, with a local maximum at 0 and local minima
at £1, normalized so that ®(0) = 1, &(+1) = 0, ®(£+2) = 1. We suppose
also that ®”(0) < 0 and ®”(£1) > 0 and that & is strictly decreasing on
(0,1) and strictly increasing on (1, 00). Assume as well that ® grows at least
linearly as |{| — co. Then ® has the W shape drawn in the illustration.

2.1 Kramers-Smoluchowski equation. Define

;g’
¢ = €Z‘ , (2.1)




Figure 1: Graph of ®

the normalization constant Z, chosen so that fR o dé = 1. We also introduce
the scaling factor

Te ' = —e€ 52, (2.2)

which, as pointed out in [P-S-V1], provides the correct dilation in time for a
nontrivial asymptotic limit. As in the papers cited in the introduction, a key
point will be showing that the rate constant in the linear reaction-diffusion
system (2.26) derived later is

\/|(I>” |(I>” :|:1)
21

(2.3)

We study solutions p¢ = p(z,&,t) of this initial-value problem for the
scaled Kramers-Smoluchowski equation:

T (pf — alyp) = (pg + 6_2p6(1>’)5 in U xR x[0,T]

% =0 on OU x R x [0, T (2.4)
p° = p§ on U x R x {t =0},

where U is a bounded, smooth domain in R", % = D,p¢ - v is the outward
normal derivative along oU, and pf = pi(x,&) > 0 is given. We are given
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also the smooth and bounded function a = a(§), satisfying
a>ag>0 (2.5)

for some constant ag. We hereafter write x e U, £ e R, 0 <t < T.
Now define

€

p
€= — 2.6
u o€’ ( )
so that u® = u(x,&,t). Then (2.4) transforms into
Teo(uf — aAu) = (aeug)§ in U xR x[0,7]
Q= on OU x R x [0,7] (2.7)
u = uf on U xR x {t=0}

for uf = Z—é. The task is to understand the limit of p¢ and u as e = 0.

2.2 Elementary estimates. We hereafter assume concerning the initial
data uf = uf(z, ) that
0<u; <C (2.8)

for some constant C' and
€ 2 € 2 € 2 €
/R/U(|u0\ + | Dyug]” + £ |uf ¢ |") o dedg < oo, (2.9)

We suppose in addition that as e — 0

{ug — 2ap locally uniformly on (? x R_ (2.10)
ug — 20 locally uniformly on U x Ry,
where o = () and By = fy(x) are smooth and Ry = {££ > 0}.
Lemma 2.1. We have the estimates

0<u <C (2.11)

and

sup //(]u€]2+\Dwu€]2+%]ugf)aedxdf
RJU

0<t<T
T
+///\u§|20€dxd§dt§0 (2.12)
0 R JU

for a constant C independent of €.



Proof. The maximum principle and (2.8) imply (2.11). Next, multiply (2.7)
by u¢ and integrate in time, recalling (2.5) and (2.9) to derive the bound

sup//|u|2gedxd§+///|pu| +1}u§| adxdgdt<(}
0<t<T

Finally, multiply (2.7) by u{ and again integrate, using (2.5), (2.9) once more
to estimate

T
sup //(|Dxu€|2+$|ug\2)06dxd§+///|u§|206dg;dgdt§a
0<t<T JR JU ¢ o JrRJU

O

2.3 Asymptotic estimates. We next recall Laplace’s asymptotics (see
for instance Bender—Orszag [B-O]):

Lemma 2.2. If f = f(§) is a smooth function on |a,b], if & € (a,b) is the
unique mazimum point and if f" (&) <0, then

b s ([ 2me? :
/a e dl =¢e <T(§o)> (14 0(1)) as € — 0. (2.13)

Now put

W

v ="(e) = €. (2.14)

and define the regions
Li=(-1-7-14+7)U(l-~1+7)

We recall now some useful facts from Herrmann-Niethammer [H-N] and
Peletier-Savare-Veneroni [P-S-V1].

Lemma 2.3. (i) We have

1
8me? \ 2
Ze = 1 1 . 2.1
. (@”(1)) (1+0(1)) ase—0 (2.15)
(ii) Furthermore,
Te o°
/a€d§—>0,/—d§—>0,/—d§—>0 (2.16)
o€ K Te
R-I, Ty



and 14y Y
1 3 2
/ ot dE — =, / T g — = (2.17)

+1—~ 2 —y g

Proof. 1. Since ® is even and ®(1) = 0, Lemma 2.2 implies

_® o e 27e? >
Zez/Re c d§:2/0 e e d§—2(@//(1)) (14 0(1)).

2

‘Q

e €

2. The limits (2.16) are elementary, as lim_,o “=
in (2.17) follows. Since

N

= 0; and the first limit

@//(O)

D) =1+ TSZ +O0([¢P) as€—=0

. 3 .
and lim._,o &z = 0, lim,o T = oo, we have

Y Y " 2 3
Te Le 2 (0) (£2+0(€*))
—_— p— 2 62
/ dé_ 62 / © dé

[ e o)

~
€

I
VN
KA
X
=7
N———
[ V)

47

- >é/m€_wgd§= — -
(I)//(l) . ’@//(ON @”(1) K

]

2.4 Compactness and convergence. We henceforth write Uy := U x

(0,7).

Lemma 2.4. (i) There exists a subsequence € = ¢, — 0 and functions

o, B € HY(Ur) such that

—l4y 1+y
/ pSdé — a, / pSdé — B (2.18)
—1-y 1=y
in L*(Ur) and
sup / /|p5| dx d¢ — 0. (2.19)
o<t<t Jr-1, Ju
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(ii) In addition,

—1+4y 14
| ddesan [ sags (2.20)
—1—y 1—y
and
—l4y 1+y
/ D,pfdé — D,a, / D,pd¢ — D, (2.21)
—1-y 1=y

weakly in L*(Ur), with

/ /|p§| dxd¢é — 0 (2.22)
R-I, JU

strongly in L*(0,T) and

sup / /|Dmp6] dx d§ — 0. (2.23)
R-1, JU

0<t<T

(iii) Also, for each time 0 <t < T and almost every x € U, we have

(2.24)

u® — 2« locally uniformly for —2 <€ <0
ut — 26 locally uniformly for 0 < & <2

as € — 0.

Proof. 1. Since p = u‘c€, we can use (2.12) and (2.16) to deduce that

sup/ /|p5|dxd§
0<i<T Jr-1, JU
< C sup <//]u6]206da:d§> (/ a€d§> — 0.
o<t<T \Jr JU R-1I,

Likewise, (2.22) and (2.23) hold.

-

2. Now define the functions

14+~

—14v
awt)i= [ pends s [ pnena

1—v 1—v



Then (2.12) implies
T
/ / lae]* 4 |oey|” + | Dyare|” dadt < C
0o Ju

T
/ / 1Be|” + Besl® + | DufBe]” dadt < C.
0o JU

Therefore we can extract a subsequence ¢ = ¢, — 0, such that a, — «,
Be — B weakly in H'(Ur) and strongly in L?(Ur), as € = ¢, — 0.

3. If 0 <a<b<2, then (2.12) and (2.16) show that

/:/U|ug]dxd€§ (/ab/[]j_—:‘ugfdxdf)é (ly%df)é—u)-

Hence for each time t,
/ 0SCq<e<p U dz — 0;
U

osc denoting oscillation in the variable €. So for each 0 < ¢ < T and almost
every x € U, u converges for 0 < £ < 2 to a function u = u(x,t). However,

since
1+
Qe = / ou® d¢,
—1—v
the first limit in (2.17) implies that u = 2a if 0 < £ < 2. The other case
follows similarly. O]

2.5 Derivation of the limit reaction-diffusion PDE. The interesting
issue is finding the limit PDE for a and £:

Theorem 2.5. For all 0 <t < T, we have
pe — ad_1 + 551, (225)

where the smooth functions o = «(z,t) and § = P(z,t) solve the linear
reaction-diffusion system

ap—a Aa=kr(f—a) inUr
i —atAB=kr(a—p) inUr

2.26
%%322%5220 on OU x [0, T] | |
a=ay, =P OnUX{tZOL

for the diffusion constants a* := a(+£1).
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The initial data are given by (2.10).

Proof. 1. Select any test function ¢ € C*(Ur), ¢ = ((z,t). Let v = ¥(£) be
a smooth function supported on [—3,3] such that 0 < ¢ <1 and ¢ =1 on

[ 5 5} Define also

272

A©)
wQ= [ T (2.27)

where A(s) = sif =3 < s < 2 and A(s) = £3 if +£5 > 2. According to (2.16)
and (2.17), ¢° is bounded and

).
2. Multiplying (2.7) by ¥¢°¢ and integrating by parts, we get
T 3 T 3
/ // Yo Cugo” dﬁdmdt+/ // Vo‘aDyu - DyCot dédadt
0o JuJ-3 0o JulJ-3
T 3 o
—/ // (V) —ug dedudt. (2.29)

<C’/// \pi| dédxdt — 0
R-1I,

Note that ¢» = 1 on I, and remember (2.20), (2.28):

) (2.28)

N |

. —<  uniformly on (—
o= - 1
~ uniformly on (3,

N NIwW

Now (2.22) implies

Yo Cpr didxdt
R—1,

—1+

/ / /_ iﬂwqﬁegptdfdxdt / / ( /_ . ¢ dg)gdxdt
—>_E/o /Uoztgdxdt.

/OT/U 1:7 Vo (p; d§drdt — %/OT/U By¢ ddt.

Consequently, since ujo® = pf,

lim /OT/U /_Zz/xb “o¢ dédadt = / / By — ay)C ddt. (2.30)

Likewise,



We similarly show using (2.21) that

T 3
lim/ / Vvo‘aDyu - DyCot dédxdt
e—0 o JuJ—3

T
- %/0 /U(aJerﬁ—a_Dxa)-DxCdxdt. (2.31)

3. We write the last term in (2.29)

/ / / st ugdfdl’dH / / / wgqbec ugdédxdt

Since ¢ = 2= if —5 <€é< 5 and is zero otherwise,

/0 T/U /_ z¢¢§Ci—:ugd£dxdt: /OT/U /_ igugdgdxdt
T
//(“6 (2,5:8) = u (2, =3, 1)) dwdt
%2// — )C ddt,

according to (2.24). In addition, (2.12) and (2.16) give

T 3 o€
/ nggzsfg“—ug dédxdt
UJ-3 Te

o€ 2
<C ( > (/K - df) — 0.
Hence
' T 3 ot T
lg%/o /U/_g(@bgb )gfzug dédzdt = 2/0 /U(ﬁ — a)( dxdt. (2.32)

4. Letting € — 0, we conclude from (2.29)—(2.32) that

/OT/U(ﬁt — oy)C dxdt + /OT/U(&JFDC”S —aDya) - DoCdadt
— 2k /OT/U(ﬁ — )¢ dzdt. (2.33)
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It follows that
By —ay — (aTAB — a” Aa) = 2k(a — fB). (2.34)

in the sense of distributions.

5. We need another functional relation between o and 5. To get this, we
multiply (2.7) by ¢ and again integrate by parts:

/OT/U /_z YCuSo® dédxdt + /OT/U /_z waDyut - DyCot dédrdt
S /OT/U /z @ﬁgCi—:ug dédadt.

Passing to limits as € — 0 gives

T T
/ /(/Bt + ay)( dxdt + / /(a+Dxﬁ +a Dya) - D,(dxdt =0. (2.35)
0o Ju 0o Ju

Consequently,
Bi+a;— (atAB+a Aa) =0 (2.36)
as distributions.

Simultaneously solving (2.34) and (2.36), we deduce that
& —a"Aa = k(B - a), fi — a* A = w(a — )

in the weak sense. In addition, since the integral identities (2.33) and (2.35)
are valid even if { does not vanish on U x [0, 7], we have

B _Oa op _Oa
+— —_ _— = +— _— =
o o O’“ay+a ov 0
and thus 05 p
a

970, =0

o 7 v
on OU x [0,T] in the weak sense. Regularity theory for parabolic PDE (see
for instance Lieberman [L]) implies that o and 8 are in fact smooth. O
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Figure 2: Level sets of ¢

3 Generalization to higher dimensions

Our methods are robust enough that we can tackle as well some higher di-
mensional generalizations, for which the variable £ lies in R™. For simplicity,
we assume that the chemical potential ® : R™ — R is smooth, nonnegative
and even in the first variable &;.

We suppose also that ® has two wells, at the points

et = (%£1,0,...,0),

connected by a single nondegenerate saddle point at the origin, normalized
so that ®(0) = 1, ®(e*) = 0. We assume furthermore that ® grows at
least linearly as |£| — oo. In addition, we require that det D*®(e*) # 0,
det D?*®(0) # 0, and that D?*®(0) is diagonal, with eigenvalues

A1(0) <0< Ag(0) < - < An(0).

The Kramers rate constant will turn out to be

. ()] V[ det D*@(e5)]

21 /] det D2®(0)] '

this agrees with (2.3) when m = 1.

(3.1)

3.1 Extending the Kramers-Smoluchowski equation. The higher
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dimensional analog of (2.4) reads

Te (05 — alyp®) = dive(Dept + € 2pD®)  in U x R™ x [0, 7]

% =0 on U x R™ x [0,T]  (3.2)
p° = pf on U x R™ x {t =0}
for
1 _ 1
Te 1= ¢ 2. (3.3)
As before, set
€ 6%51)
g = 76,

the constant Z,. chosen so that me o¢d¢ = 1. We once again write

so that (3.2) becomes

1.0 (uf — aAyuf) = dive(o¢Deuf) in U x R™ x [0, 7]
Q= on OU x R™ x [0, 7] (3.4)
Ut = u on U x R™ x {t = 0}.

3.2 Estimates and convergence. We suppose that
0<u; <C

and that
/<|ug\2 Dyl + L | Deus ) dude < oo, (3.5)
R™ JU

Write
RY = {{ € R™ | £ > 0},

and also assume that as e — 0

{ug — 2ap locally uniformly in U x R™ (3.6)

u§ — 2By locally uniformly in U x R7,
where ag = () and By = fy(x) are smooth.
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Lemma 3.1. We have the estimates
0<u<C

and

SHP/ /(\u€\2+!Dxu€\2+$€yDgu€\2)ofdxd§
m JU

0<t<T
T
+// /|u§|206dxd§dtgo. (3.7)
0 m JU

We again put v = ~(e) = e1; and for this higher-dimensional setting,
define
]7 = B(e_,y) U B(e+77)'

We will additionally write
B*:= B(e*,r), B:=BTuUB",
the radius 7 > 0 selected so small that B* C {®(§) < 1}.

Lemma 3.2. We have

1
/ o d¢ — 0, / ot dé — =, (3.8)
B(e*,7) 2
Rm—1,
and .
o
/ % de =0, (3.9)
{®>2} Te

Lemma 3.3. (i) There exists a subsequence € = ¢, — 0 and functions
o, 3 € HY(Ur) such that

/ podé — a, / pidé — (3.10)
weakly in L*(Ur), and
sup / |p°| d¢ — 0. (3.11)
0<i<T JR™-B
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(ii) In addition,

[ side~an [ piac—s (3.12)
and
D,p*d¢ — D, / D,p*d¢ — D,.j (3.13)
B~ B+

weakly in L*(Ur), with

/ /]p§|d:(:d£—>0 (3.14)
Rm—B JU

strongly in L*(0,T) and

sup/ /|Dxp€|dxd§—>0. (3.15)
0<t<T Jrm-B JU

(iii) For each time 0 <t <T and almost every x € U, we have

{ue — 2a for almost every £ € B~ (3.16)

u® — 28 for almost every £ € BT

as € = 0.
3.3 Asymptotics and capacity estimates. We next recall Laplace’s

asymptotics in higher dimensions.

Lemma 3.4. If f = f(§) is a smooth function on R™, if &, is the unique
mazimum point of f and if D*f(&) <0, then

G ()] (2me?) s
/m e dE=e D] (1+o0(1)) as € — 0. (3.17)

We next follow Bovier-Eckhoff-Gayrard-Klein [B-E-G-K] and define the
relative e-capacity of the sets B~ and BT to be

1
Cap (B~, B") := inf {5/ e 2

m

DULdE | blp = —1, 05 — 1},

(3.18)
the infimum taken over C* functions v : R™ — R.
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Lemma 3.5. As e — 0, we have

7, = v jﬁ;éiei)‘ (1+0(1)) (3.19)
and
Cap . (B~,B") = 26_5(27T62)m2_2 | d’eizlg)Q)CII)(Oﬂ (14 o0(1)). (3.20)

Proof. Since there are two wells of equal depth at e* and since ®(e*) = 0,
Lemma 3.4 implies (3.19). The assertion (3.20) is due to [B-E-G-K], whose
statement differs somewhat as we are using € in place of their ¢ and have
normalized differently in the definition of capacity.

[]

The primary technical problem we confront is identifying in higher dimen-
sions a good analog of the function ¢¢ = ¢(£) used in the proof of Theorem
2.5.

Lemma 3.6. (i) For each € > 0, there exists a function ¢¢ = ¢¢(§) belonging
to W2P(R™) for all 1 < p < oo and solving the PDE

loc

o° 1 1
—div| —D¢ | = — — ——XB-- 3.21
< (500) = o - e &2

(ii) In addition,
sup |¢¢| < C, (3.22)
Rm

for a constant independent of €; and
51

Above and in our subsequent discussion, we write D¢® = D¢, A¢® =
A¢gc, ete.

uniformly on BT

(3.23)

x| 3=

uniformly on B™,

K given by (3.1).
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Proof. 1. Define ¢¢ = ¢(£) to be a minimizer of

1 €
3 [ Zipepde— f sdcrf o (3.29)

2 T,

among all H,._ functions that are odd in the variable &. The slash through
the integral signs means the average. The corresponding Euler—Lagrange
equation is (3.21), and standard regularity theory implies ¢¢ € I/Vlif for each

1<p<oo.
We also have
>0 inRT, ¢°<0 inR”,

as we could otherwise lower the energy by taking the odd function ¢ = (¢°)
in R and ¢ = —(¢)_ in R”. Define

Ae 1= ¢° dE, pic == sup ¢".
Bt B+

Then 0 < A\, < pe and
sup 9] = e, (3.25)

since otherwise ¢ = A(¢¢) would give a smaller value in (3.24), where A(s) = s
if —pe < s < peand A(s) = tp, if £5 > pe.

2. Comparing with ¢ = 0 for the energy (3.24) gives the bound

/ T | D¢ de < 4. (3.26)
m Te
We next use (¢° as a test function in the weak form of the Euler-Lagrange
PDE, where the smooth, compactly supported function ¢ = (% is identically
1 on the ball B(R) = B(0, R) and satisfies |D(| < 1. Then for large R we
have . .
g €2 0 ¢ €
| Zipsrcac = - [ Zoper-Dede

Now
o° zeDﬁfl) (i ‘ N€< _6 Z)¢€ 21 )é ( —6d );
/m Te C 6 g /m ;E| ‘ f / '—B(R) Te 5
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Using (3.26) and (3.9), we deduce upon sending R — oo that

/ i—symﬂ? dg = 2. (3.27)

3. Introduce the regions
B* := B(e*,2r) 5D B*;
we may assume that r is small enough that B+ C {£ € R™ | ®(¢) < 5}

Then (3.27) and Poincare’s inequality imply

/ |6 — A d€ < C[ D¢ | d¢ < Ce 52\, (3.28)
B+ B+

for
A= o€ dE.
B+

We also compute

|)\e_/~\e|:’ ¢€d§—5\6
Bt

<f lo-Adae

SC/B+\¢E—5\€|d£§C</B+|¢€—f\e|2d§>2.

Therefore (3.28) implies
- 1
Ae — Ae| < o(1)A. (3.29)

4. In R, the PDE (3.21) reads
(0. 1
—div (ZD¢ ) = WXB+.
We expand the left hand side and recall the definition of o€, to discover that

- D®- D¢t 1. 1
SA A = e

I div((¢° — X\ )D®) + ém(ng — )+ ;—L

€2
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Then interior elliptic estimates (see for instance Gilbarg-Trudinger [G-T,
Theorem 8.17]) imply for any fixed m < p < oo that

C € 3 € 3
||¢* 6—2||¢ = Aoy + CllO° = Acll2(+)-
Therefore (3.25) and (3.28) let us calculate that as e — 0
€ \ C € \ 3
[16° = Acllz=(m+) < 0(1) + S0 = Acllo(z+) + (1)

C € € 3
< of1) + ¢ - Anﬂwwyw M2y + 0N

1
2pe 1

o(1) + Ol = Adlly 7 5 NS + o(1)A?

L°°(B+)
_2 1

1 2
So(l)(l—i—)\?—l—Hgbe P[RR )

(3.31)
We have

||§be - 5‘6HL°<>(B‘+) < 2:“6 - 2|:ue - 5‘6| + 25‘6‘

As ¢ attains its maximum s, over R in B, we see also that
e — 5‘6‘ <ll¢* = 5‘GHLC’°(15’+)-
Hence (3.31) gives

~ ~ ~ 172 1 l_l
[fte = Ae| < || = Ael|poe(my < 0(1) (1 e — Al TPAE + Ae ) . (3.32)
It follows from this estimate firstly that

~ _1
l1te — Al < o(1) (1 + e ) .

Using this inequality back in (3.32), we deduce that

~ ~ _g l 17l
16 Alamqaey < o0) (14 e = S50 4077

L\ 177 1 -1
<o(1) 1+(1+A€ ”) D

—o1) (1+ )
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for

1
f=1—-<1.
p
Thus (3.29) gives
67 = Al sy < o(1) (14 AY) (3.33)
It follows similarly that
16+ Al [zoe () < 0(1) (L +AY). (3.34)
5. We assert finally that
1
Ae = - + o(1). (3.35)

This fact and (3.33), (3.34) will complete the proof.
Now according to (3.19), (3.20) and the definition of k, we have

1 €
inf{i/ i—\Dz/deg | Ylp = —1,0|gs = 1} —k+o(l).  (3.36)
Let ¢¢ denote a minimizer that is odd in the variable &;. Then using ¢ = A°
as a competitor in (3.24) and recalling (3.27), we estimate

1 €
A = —/ T\ De|? de — 2
2 Jpm Te

)\2 €
<Z [ ZipyPde -2
T

2 Jam T
= A%k —2X\ +o(1).

Minimizing over A, we see that —\, < —% + o(1); thus % < liminf. .o \.. In
particular, A\, is bounded away from O.

Next note from (3.33) and (3.34) that f— — 41 uniformly on B*. (This
assertion is valid even if \. — oo, a possibility we have not yet eliminated.)
Fix a small number § > 0 and define



where now A(s) =sif —1+0 <s<1—9dand A(s) =£(1—0)if £5 > 1—0.
Observe that for small enough €, we have 1 = +1 on B*. Our employing v

as a competitor in (3.36) gives

1 o€
< = v 2
/ﬁ;+0(1)_2/mT€|D1/J| d¢
1 o¢
S — —|D¢|P(A)? d
2(1—5)2A3/Rmn| (A de
1 o€
< - Z Do 2
—2(1—5)2Ag/ﬂw Do

1
2(1 — 5)2A32AE'

Hence 1
A < ——— 1).
< (1—5)2n+0( )

This inequality is valid for each 6 > 0 provided € is small enough; conse-
quently, limsup,_,y A < % O

3.4 Derivation of the reaction-diffusion system.
Theorem 3.7. For all 0 <t < T, we have

/0E — ade- + ﬁée“w
(x,t) and B = p(x,t) solve the linear

(3.37)

where the smooth functions «
reaction-diffusion system

ar—a Aa=kr(f—a) inUr
B —atAB=k(a—p) inUr (3.38)
g_g:g_f:o on OU x [0,T] |
Oé:OéO;B:ﬁO OnUX{t:O}’

for a* = a(e®).
Proof. 1. Select ¢ € C*(Ur), ¢ = ((z,t); and let » = () be a smooth
function supported on {® < 3} such that ) =1 on {P < 2}.
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Multiplying (3.4) by ¥¢°( and integrating by parts, we get

/OT/U /{%3} Yo Cuiot dedudt + / T/ / o Vo aDyus - D,y(ot dédadt

/ / /{ = Ds () - Deus dédadt. (3.39)

o<3} Te

2. We then write ujo® = p; and argue as in the previous proof, using

(3.23) to find

113% /0 ' / / o e Cuto” dédrdt = % / ' /U (B — a)Cdwdt  (3.40)
lim / / / o WécaDyus - DyCot dédudt

—— + —a- .
= /i/o /U(a D, —a D,a) - D,Cdxdt. (3.41)

3. We write out the last term in (3.39)

/ / /M} §T€D¢E Deuf dédadt + / / /¢<3}¢6¢TED¢ Deucdédudt
- /0 /U /{¢§3}¢<div (ZD¢€) ut dédudt
- /0 T/U /{¢§3}ufgi—:Dw~D¢ed§d:cdt+ /O T/U /{@Ss}gﬁ(f_—:Dw'Dguedédmdt.

Since D) = 0 on {® < 2}, second and third terms are estimated by

T € % € %
C’(/// (|D§u€|2+|D¢E|2)U—d§dxdt> (/ “—dg) 0,
o Ju Jrm Te {2<o<3} Te

according to (3.9). Furthermore, the PDE (3.21) implies

_ /0 ! /U /{ . Ve (‘i—:mpe) ue dédudt
_ /OT/Ug (][B+u€d§— B_uedf) dedt
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Hence (3.23) gives

lim / / / ¢<3}Cn De(00¢°) - Deut dédadt = 2 /0 ' /U C(B — a)dzdt. (3.42)

4. Sending € — 0, we conclude from (2.29) and (2.30)—(2.32) that «, 3
satisfy the integral identity

/OT/U(@; — ap)C dxdt + /OT/U(QJer”B 4 Dya) - DyC dudt
= —2r /OT/U(ﬁ — ) dzdt

By —ay — (atAB — a” Aa) = 2k(a — B).

for all test functions (. Consequently,

As in the previous section, we also have
Bi +ap — (atAB +a” Aa) = 0;

the PDE in (3.38) for a and f follow. O
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