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POTENTIALS
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Abstract. In this paper, we generalize the results of Evans and Tabrizian [3],
by deriving asymptotics for the time-rescaled Kramers-Smoluchowski equa-

tions, in the case of a general non-symmetric potential function with multiple
wells. The asymptotic limit is described by a system of reaction-diffusion equa-

tions whose coefficients are determined by the Kramers constants at the saddle

points of the potential function and the Hessians of the potential function at
global minima.

1. Introduction

In this paper, we consider the following Kramers-Smoluchowski equation{
τε (ρεt − a∆xρ

ε) = div
[
Dρε + 1

ερ
εDΦ

]
in U × Rd × [0, T ] ,

ρε = ρ0 on U × Rd × {t = 0} ,
(1.1)

where ε > 0 is a scaling parameter, ρε = ρε(x, ξ, t) is the chemical density, and
Φ = Φ(ξ) is a smooth potential function on Rd with multiple wells. This PDE
models a simple chemical reaction on the atomic level. For more information on
the chemical background, consult [13, 16] and the references therein.

Our primary concern is the limiting behavior of ρε when ε tends to 0. In this
paper, we show that the asymptotic limit of ρε satisfies a system of reaction-diffusion
equations. See Theorem 2.1 for the rigorous formulation of this result.

The one-dimensional case d = 1 has already been investigated in [13, 14, 6, 1].
In those works, Φ is assumed to be an even potential function with two wells, and
the limit of ρε is derived using tools such as Γ-convergence [13, 14], a Raleigh-type
dissipation functional [6], and a Wasserstein gradient flow [1]. We refer to [3, 16]
for more detailed survey of the history of the one-dimensional problem.

In [3], Evans and Tabrizian developed a new and direct approach for this prob-
lem, based on a clever test function that satisfies an elliptic PDE, as well as using
capacity estimates from [2]. The techniques in [3] are robust enough to be general-
ized in higher dimensions, where Φ is a double-well potential on Rd. The limitation,
however, is that it only works for the case where Φ is symmetric. In this paper,
we remove the symmetry-assumption and further allow Φ to have more than two
wells. In that case, our analysis becomes more delicate, and requires a generalized
version of variational principle in [3], which is Theorem 4.2 of the current paper.
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We note that a similar result to the current paper has recently been derived by [12]
using tools from semiclassical analysis.

We would like to emphasize that the tools developed in Theorem 5.3 are also
useful for analyzing metastable random processes, which are processes with mul-
tiple stable equilibria. It has been noted in [7, 8, 11, 15] that, by investigating
the inhomogeneous version of our main theorem (Theorem 5.3), one can obtain a
complete analysis of the metastability of such processes. In addition, this method
turns out to be extremely effective in the investigation of metastable diffusions.
Two recent papers [11, 15] obtained scaling limits of metastable diffusions known
as small random perturbations of dynamical systems. Although such a scaling limit
has already been developed for a wide class of metastable Markov chains, it has
not been previously known for metastable diffusions.

Our paper is organized as follows: In Section 2, we introduce the detailed model
and our assumptions on Φ, as well as the main result of this paper. In Section 3, we
derive some preliminary estimates, in Section 4 we state and prove the generalized
variational principle mentioned above, and in Section 5 we construct the auxiliary
test function. Finally, Section 6 contains the proof of our main result.

2. Model and Main Result

2.1. Potential Φ. Let Φ : Rd → R be a smooth potential function with multi-
ple minima. In this section, we state our assumptions on Φ, and introduce some
notation about the structure of its valleys.

First, we assume that Φ(ξ) grows to +∞ as |ξ| → ∞. Furthermore, suppose Φ
has exponentially tight level sets, meaning that for all a ≥ 0 there exists a constant
C(a) > 0 such that ∫

{ξ:Φ(ξ)≥a}
e−Φ(ξ)/εdξ ≤ C(a)e−a/ε (2.1)

for all ε ∈ (0, 1). Note that (2.1) is achieved if Φ grows at least linearly as |ξ| → ∞.
Moreover, as observed in [2, Assumption H.1], (2.1) is also valid if

lim inf
ξ→∞

|∇Φ(ξ)| = lim inf
ξ→∞

[ |∇Φ(ξ)| − 2∆Φ(ξ)] = ∞ .

Now we introduce the inter-valley structure corresponding to the potential func-
tion Φ. We refer to Figure 1 for the illustration of the definitions below. We will
assume that Φ has finitely many critical points and achieves minimum at several
points. This feature can be characterized more precisely by first defining the valleys
of Φ. Fix H ∈ R and let S = {σ1, σ2, · · · , σL} be the set of saddle points of Φ
with height H, i.e., Φ(σ) = H.

Denote by W1, W2, · · · , WK the connected components/valleys of the set {ξ :
Φ(ξ) < H}. Assume that W1 ∪W2 ∪ · · · ∪WK is connected (here A is the closure
of the set A).

The minimum of Φ on the valley Wi, 1 ≤ i ≤ K, is achieved at mi ∈ Wi and we
suppose that

Φ(m1) = Φ(m2) = · · · = Φ(mK) = h

so that valleys W1, W2, · · · , WK have the same depth H −h. Hence, m1, · · · , mK

are minima of Φ.
Let

Si,j =Wi ∩Wj ⊂ S ; 1 ≤ i 6= j ≤ K (2.2)
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Figure 1. (Left) An example of the potential function Φ with four
valleys, i.e., K = 4. (Right) Visualization of the inter-valley structure
corresponding to Φ.

be the set of saddle points between valleys Wi and Wj . We select small enough
η ∈ (0, H −h) so that there is no critical point ξ of Φ such that Φ(ξ) ∈ (H − η, H).
Fix such η and define

Vi = {ξ ∈ Wi : Φ(ξ) < H − η} ; 1 ≤ i ≤ K . (2.3)

Then, the set Vi, 1 ≤ i ≤ K, is connected. Define

∆ =

(
K⋃
i=1

Vi

)c
. (2.4)

Finally, we assume that, for each saddle point σ ∈ S, the Hessian (D2
ξΦ)(σ) has one

negative eigenvalue −λσ and (d − 1) positive eigenvalues, and for each minimum
mi, 1 ≤ i ≤ K, the Hessian (D2

ξΦ)(mi) is non-degenerate.

2.2. Kramers-Smoluchowski equation. We now describe the scaled Kramers-
Smoluchowski equation. Define

τε = ε−1e−(H−h)/ε and σε(ξ) = Z−1
ε e−Φ(ξ)/ε , (2.5)

where the normalizing factor Zε is defined by

Zε =

∫
Rd
e−Φ(ξ)/ε dξ (2.6)

so that
∫
Rm σ

εdξ = 1. Note that Zε <∞ because of (2.1).

Let U be a bounded, smooth domain in Rn for some n ∈ N and let ∂ρε

∂ν = Dxρ
ε ·ν

be the outward normal derivative along the boundary ∂U . Let a : Rn → R be a
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smooth and bounded function such that a(·) ≥ a0 > 0 for some constant a0. Fix
T > 0 and consider the equation

τε (ρεt − a∆xρ
ε) = divξ

[
Dξρ

ε + 1
ερ
εDξΦ

]
in U × Rd × [0, T ] ,

∂ρε

∂ν = 0 on ∂U × Rd × [0, T ] ,

ρε = ρε0 on U × Rd × {t = 0} .
(2.7)

For 1 ≤ i ≤ K, we write

µi =
1√

det(D2
ξΦ)(mi)

, µ =

K∑
i=1

µi , and ai = a(mi) . (2.8)

For σ ∈ S, denote by λσ the unique negative eigenvalue of the matrix D2
ξΦ(σ), and

define the Kramers constant at σ by

κσ =
−λσ

2π
√
−det(D2

ξΦ)(σ)
.

Recall Si,j from (2.2) and define

κi,j =
∑
σ∈Si,j

κσ ; 1 ≤ i 6= j ≤ K . (2.9)

For convenience we set κi,i = 0 for all 1 ≤ i ≤ K. Define the rate constants by

ri,j =
κi,j
µi

; 1 ≤ i 6= j ≤ K . (2.10)

Now we explain our assumptions on the initial data. Consider the normalized
initial data

uε0(x, ξ) =
ρε0(x, ξ)

σε(ξ)
.

Then, we assume that u0 is bounded on R, is differentiable with respect to x and
ξ, and satisfies∫

Rd

∫
U

(
|uε0|2 + |Dxu

ε
0|

2
+

1

τε
|Dξu

ε
0|

2

)
σε dxdξ < ∞ . (2.11)

Finally, assume that, for smooth functions α0
1, · · · , α0

K : U → R, we have the
following convergence as ε tends to 0:

uε0(x, ξ)→ µ

µi
α0
i locally uniformly in U ×Wi ; 1 ≤ i ≤ K .

Under this set of assumptions, we are now ready to state the main result of our
paper:

Theorem 2.1. For all t ∈ [0, T ], we have, in the sense of Remark 2.2,

ρε(x, ξ, t) dξ ⇀

K∑
i=1

αi(x, t) δmi as ε→ 0 , (2.12)

where the smooth functions α1, · · · , αK on U × [0, T ] solve the system of linear
reaction-diffusion equations given by

∂tαi − ai∆αi =
∑K
j=1(rj,iαj − ri,jαi) in U × [0, T ]

∂αi
∂ν = 0 on ∂U × [0, T ]

αi = α0
i on t = 0

(2.13)
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for all 1 ≤ i ≤ K.

Remark 2.2. The weak convergence (2.12) means that for all f = f(x, ξ, t) ∈
C(U ×A× [0, T ]),

lim
ε→0

∫
[0,T ]

∫
U

∫
A

ρε(x, ξ, t)f(x, ξ, t)dξdxdt =

∫
[0,T ]

∫
A

K∑
i=1

αi(x, t)f(x,mi, t)dxdt .

2.3. Graph structure of valleys and an associated Markov chain. The main
result described above is closely related to a Markov chain on a graph whose vertices
are the valleys of potential Φ. More precisely, denote by V = {1, 2, · · · ,K} the set
of vertices, in such a way that i ∈ V corresponds to the valley Vi. Moreover,
two vertices i, j ∈ V are connected by an edge if and only if Wi ∩ Wj 6= φ, or
equivalently κi,j 6= 0. Denote by the G the resulting graph. Since we have assumed

that the set W1 ∪W2 ∪ · · · ∪WK is connected, the graph G is a connected graph.
Let {Xt : t ≥ 0} be a Markov chain on V where the jump rate from i ∈ V to

j ∈ V is ri,j (cf. (2.10)). Since ri,j = 0 if κi,j = 0, Xt becomes a Markov chain on
G. Define

µ̂i =:
µi
µ

for 1 ≤ i ≤ K and µ := (µ̂1, · · · , µ̂K) .

Then, observe that the probability measure µ on V is the invariant measure for
the Markov chain Xt, and furthermore, the Markov chain is reversible with respect
to µ in the sense that µ̂iri,j = µ̂jrj,i for all i 6= j. The generator L of this
Markov chain can be regarded as a linear operator on RK . More precisely, for
b = (b1, · · · , bK) ∈ RK , the ith component of Lb ∈ RK is given by

(Lb)i =

K∑
j=1

ri,j(bj − bi) .

Remark 2.3. Assume that a ≡ 0 so that αi, 1 ≤ i ≤ K, is a function of time only.
Then, define α̂i(t) = αi(t)/µ̂i, and let α̂(t) = (α̂1(t), · · · , α̂K(t)) ∈ RK . Then, we
can deduce from (2.13) that

dα̂i
dt

(t) =

K∑
j=1

ri,j(α̂j(t)− α̂i(t)) = (Lα̂(t))i .

Therefore, α(t) = (α1(t), · · · , αK(t)) is the marginal density of the Markov chain
Xt with respect to the invariant measure µ, whose starting (possibly deterministic)
measure is (α0

1, · · · , α0
K).

3. Preliminary Estimates

In this section, we state and prove estimates. Denote by oε(1) the term vanishing
as ε→ 0.

Lemma 3.1. We have that∫
Vi
e−Φ(ξ)/εdξ = [1 + oε(1)] e−h/ε(2πε)d/2µi ; 1 ≤ i ≤ K , (3.1)∫

∆

e−Φ(ξ)/εdξ = oε(1)e−h/εεd/2 , and (3.2)

Zε = [1 + oε(1)] e−h/ε(2πε)d/2µ . (3.3)
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Proof. The proof of (3.1) is an easy consequence of Laplace’s method. The estimate
(3.2) is a direct consequence of (2.1). Finally, (3.3) follows immediately from (3.1)
and (3.2) because of the definition of Zε (cf. (2.6)). �

Lemma 3.2. For A ⊂ Rd, suppose that there exists c > 0 such that Φ(ξ) ≥ H + c
for all ξ ∈ A. Then, ∫

A

σε

τε
dξ = oε(1) .

Proof. By (3.3),

σε

τε
= [1 + oε(1)]

ε

(2πε)d/2µ
e(H−Φ)/ε . (3.4)

Hence, the lemma immediately follows from (2.1). �

Now we establish several compactness estimates similar to [3, Section 3]. Let

uε(x, ξ, t) :=
ρε(x, ξ, t)

σε(ξ)
.

Then, by (2.7), the uε satisfies

uεt − a∆xu
ε =

1

σε
divξ

[
σε

τε
Dξu

ε

]
. (3.5)

The next lemma is an energy estimate that is similar to that of [3, Lemma 3.1].
However, instead of skipping the proof, we refer the readers to the Appendix, since
the notation here is more involved than [3].

Lemma 3.3. For some constant C > 0, we have the bound

0 ≤ uε ≤ C on U × Rd × [0, T ] (3.6)

and the energy estimate

sup
0≤t≤T

∫
Rd

∫
U

(
|uε|2 + |Dxu

ε|2 + τ−1
ε |Dξu

ε|2
)
σε dxdξ

+

∫ T

0

∫
Rd

∫
U

|uεt|2 σε dxdξdt ≤ C . (3.7)

Define UT = U × (0, T ). We next develop some pre-compactness results similar
to [3, Lemmas 3.2 and 3.3]. Again, proofs can be found in the Appendix since they
are more involved.

Lemma 3.4. There exist a sequence {εn}∞n=1 of positive real numbers converging
to 0 and functions α1, α2, · · · , αK ∈ H1(UT ) that satisfy the following:

(1) For all 1 ≤ i ≤ K, we have that, as n→∞,∫
Vi

∫
U

ρεn(x, ξ, t) dxdξ ⇀ αi(x, t) weakly in L2(UT ) and (3.8)

sup
0≤t≤T

∫
∆

|ρεn(x, ξ, t)| dξ → 0 . (3.9)
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(2) For all 1 ≤ i ≤ K, we have that, as n→∞,∫
Vi
∂tρ

εn(x, ξ, t) dξ ⇀ ∂tαi(x, t) weakly in L2(UT ) , (3.10)∫
Vi
Dxρ

εn(x, ξ, t) dξ ⇀ Dxαi(x, t) weakly in L2(UT ) , (3.11)∫
∆

∫
U

|∂tρεn(x, ξ, t)| dxdξ → 0 strongly in L2(0, T ) , and (3.12)

sup
0≤t≤T

∫
∆

∫
U

|Dxρ
εn(x, ξ, t)| dxdξ → 0 . (3.13)

(3) For all t ∈ [0, T ], for all 1 ≤ i ≤ K, and almost every x ∈ U , we have that,
as ε→ 0,

uε(x, ξ, t) → αi(x, t)

µ̂i
for almost every ξ ∈ Vi . (3.14)

4. A variational Problem

Throughout the rest of the paper, elements of RK are denoted by bold lower-
case letters such as a =(a1, · · · , aK), and subsets of RK are denoted by bold capital
letters like A and B.

Define D : RK → R by

D(b) =
1

2µ

K∑
i,j=1

κi,j(bj − bi)2 ; b ∈ RK . (4.1)

Note that D(b) = 0 implies b1 = b2 = · · · = bK since the graph G is connected.

Remark 4.1. The function D is the so-called Dirichlet form associated with the
generator L defined in Section 2.3. More precisely, we can write

D(b) =

K∑
i=1

µ̂ibi(−Lb)i .

For b = (b1, · · · , bK) ∈ RK , define

Fb =
{
ψ ∈ H1(Rd) : ψ

∣∣
Vi
≡ bi for all 1 ≤ i ≤ K

}
. (4.2)

In the current and the next section, we only consider functions on Rd, that is only
depending on ξ and independent of the variable x. Hence, for a function φ : Rd → R,
the notations Dφ and ∆φ are used to represent Dξφ and ∆ξφ, respectively. Then
the following result is a generalization of [2, Theorem 3.1].

Theorem 4.2. For any b ∈ RK , we have that

inf
ϕ∈Fb

∫
Rd

σε

τε
|Dψ|2dξ = [1 + oε(1)]D(b) . (4.3)

Proof. By (3.4) and definition of D(·) we can rewrite the identity (4.3) as

inf
ϕ∈Fb

ε

∫
Rd
e−Φ/ε|Dψ|2dξ = [1 + oε(1)] e−H/ε

(2πε)d/2

2

K∑
i,j=1

κi,j(bj − bi)2 . (4.4)
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Denote by ϕεb the minimizer of the left-hand-side. Then, ϕεb solves the following
Euler-Lagrange equation:

div
[
e−Φ/εDϕεb

]
= 0 on ∆ and ϕεb = bi on Vi for all 1 ≤ i ≤ K .

For 1 ≤ i ≤ d, write ei = (0, · · · , 0, 1, 0, · · · , 0) the ith standard basis vector of Rd.
Then, by linearity and uniqueness of the Euler-Lagrange equation, it follows that

ϕεb =

d∑
i=1

biϕ
ε
ei . (4.5)

Therefore, we can write

ε

∫
Rd
e−Φ/ε |Dϕεb|2 dξ =

K∑
i=1

b2i ε

∫
Rd
e−Φ/ε|Dϕεei |

2 dξ

+
∑

1≤i 6=j≤K

bi bj ε

∫
Rd
e−Φ/ε|D(ϕεei + ϕεej )|

2 dξ (4.6)

In [2, Theorem 3.1], it is shown that

ε

∫
Rd
e−Φ/ε |Dϕεei |

2dξ = [1 + oε(1)] e−H/ε (2πε)d/2
K∑
l=1

κi,l . (4.7)

and that, for i 6= j,

ε

∫
Rd
e−Φ/ε|D(ϕεei + ϕεej )|

2 dξ

= [1 + oε(1)] e−H/ε (2πε)d/2
∑

1≤l≤K : l 6=i,j

(κi,l + κj,l) . (4.8)

By (4.7) and (4.8), we have that

ε

∫
Rd
e−Φ/εDϕεei ·Dϕ

ε
ej dξ = −[1 + oε(1)] e−H/ε (2πε)d/2 κi,j . (4.9)

We can complete the proof by combining (4.6), (4.7) and (4.9). �

5. Construction of the Test Function

5.1. Preliminaries. Let M be the symmetric K ×K matrix defined by

Mij =

{
1
µ

∑K
l=1 κi,l if i = j

− 1
µκi,j if i 6= j

; 1 ≤ i, j ≤ K ,

so that

D(x) = xTMx . (5.1)

Define two subsets of RK by

N = {x ∈ RK : x1 = x2 = · · · = xK} ,
R = {x ∈ RK : x1 + x2 + · · ·+ xK = 0} .

Lemma 5.1. The null-space and range of the matrix M are N and R respectively.
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Proof. Suppose that Mb = 0. Then, by (5.1) we have D(b) = 0. Hence, b ∈ N
as we observed in the line following (4.1). On the other hand, any b ∈N satisfies
Mb = 0. Hence, the null-space of M is N. Since the dimension of the null-space

is 1, that of the range of M must be (K − 1) dimensional. Since
∑K
i=1(Mb)i = 0

for all b ∈ RK , the range of M is a subset of R. Since dim(R) = K − 1, we can
conclude that R is the range of M. �

For c ∈ R, write
M−1c = {b ∈ RK : Mb = c}

Then, for b ∈ M−1c, we can write M−1c = N + b. Hence, we can observe that
D(·) is a constant function on M−1c.

Now define a function Dc : RK → R by

Dc(x) = D(x)− 2 c · x . (5.2)

Then, by (5.1), for b ∈M−1c,

Dc(b) = b ·Mb− 2 c · b = −b ·Mb = −D(b) , (5.3)

and hence the function Dc(·) restricted to M−1c is a constant function as well. Let
us denote that constant by Dc(M−1c), with slight abuse of notation.

Lemma 5.2. Fix c ∈ R. Then, Dc(M−1c) is the minimum of Dc(·). Furthermore,
if Dc(x) ≤ Dc(M−1c) + δ for some δ > 0, then there exists b0 ∈ M−1c such that

|x− b0| ≤ C
√
δ for some constant C > 0 not depending on δ.

Proof. Let b ∈ M−1c. Then, since M is symmetric, it is easy to observe that for
any x,

Dc(x) = Dc(b) +D(t) .

where t := x − b. The first part of the lemma follows since D is a non-negative
function. As for the second part, we must have D(t) ≤ ε, and hence, by continuity
of D and the fact that the nullspace of D is N, we can find t ∈ R such that
|ti − t| ≤ C

√
δ for all 1 ≤ i ≤ K, where ti is such that t = (t1, · · · , tK). Then,

b0 := b + (t, t, · · · , t) ∈ b + N = M−1c fulfills the requirement of the second part
of the lemma. �

5.2. Test function. Denote by χA(·) the indicator function of the set A ⊂ Rd.
We emphasize that the following construction of the test function ψε is the main
ingredient in the proof of Theorem 2.1, and contains most of technical difficulties
of the problem.

Theorem 5.3. Fix a non-zero vector c ∈ R and b ∈M−1c. Then, for each ε > 0,
there exists a function ψε ∈W 2,p

loc (Rd)∩L∞(Rd) for all p ∈ [1,∞) that satisfies the
equation

− div

(
σε

τε
Dψε

)
=

K∑
i=1

ci
|Vi|

χVi , (5.4)

and the uniform energy estimate

sup
0<ε<1

∫
Rd

σε

τε
|Dψε|2 < ∞ (5.5)

and finally,
lim
ε→0

sup
1≤i≤K

sup
ξ∈Vi
|ψε(ξ)− bi| = 0 . (5.6)
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The proof of this theorem is divided into several lemmas. We start by simplifying
the problem and by introducing relevant notions before starting these lemmas.

By linearity, it suffices to prove the theorem for c = ei − ej for some i 6= j.
Therefore, without loss of generality, we assume that c = e1−e2 = (1,−1, 0, · · · , 0),
so that c1 = 1, c2 = −1, ci = 0 for i ≥ 3.

For φ ∈ H1
loc(Rd), define a functional I by

I[φ] =
1

2

∫
Rd

σε

τε
|Dφ|2 dξ − 1

|V1|

∫
V1

φdξ +
1

|V2|

∫
V2

φdξ , (5.7)

and let φε be a minimizer of I[φ] on H1
loc(Rd). Then the Euler-Lagrange equation

for φε is (5.4) for c = e1−e2 ∈ RK , and moreover φε ∈W 2,p
loc (Rd) for all p ∈ [1,∞).

For 1 ≤ i ≤ K, define

λε,i =
1

|Vi|

∫
Vi
φε dξ .

Since I[φε] = I[φε + c] for all c ∈ R, we can assume without loss of generality that

λε,1 = −λε,2 := λε .

Note that λε ≥ 0 since otherwise we can replace φε with −φε. Let µε,i :=
supξ∈Vi |φ

ε(ξ)| and define

µε := max{µε,1, µε,2} . (5.8)

Then we can assume that
sup
ξ∈Rd

|φε(ξ)| = µε ,

since otherwise, φ̄ε = Λ(φε) gives a lower value of I, where

Λ(s) =


−µε if s ∈ (−∞, −µε)
s if s ∈ [−µε, µε]
µε if s ∈ (µε, ∞)

With the simplification and notations above, we now start the proof of the The-
orem 5.3. The first step is the following lemma.

Lemma 5.4. We have that ∫
Rd

σε

τε
|Dφε|2 dξ = 2λε .

Proof. First observe that, since φε is a minimizer, I[φε] ≤ I[0], and so∫
Rd

σε

τε
|Dφε|2 dξ ≤ 4λε . (5.9)

For R > 0, let BR := {ξ ∈ Rd : |ξ| ≤ R} and let ζR : Rd → [0, 1] be a smooth
cutoff function with compact support such that ζR ≡ 1 on BR, and |DζR| ≤ 1. Let
us select R large enough so that Vi ⊂ BR for all 1 ≤ i ≤ K and Φ(ξ) > H + 1 on
(BR)c Then, multiplying (5.4) by ζRφ

ε and integrating by parts, we obtain∫
Rd

σε

τε
|Dφε|2 ζR dξ = 2λε −

∫
Rd

σε

τε
φεDφε ·DζR dξ . (5.10)

Because |DζR| ≤ 1, the square of the last term is bounded by(∫
Rd

σε

τε
|Dφε|2 dξ

)(∫
(BR)c

σε

τε
dξ

)
. (5.11)
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Note that by the assumption Φ(ξ) > H + 1 on (BR)c and by Lemma 3.2, the last
integral converges to 0 as R→∞ Hence, by our priori bound (5.9), the expression
in (5.11) vanishes as R → ∞. Hence, the proof is completed by letting R → ∞ in
(5.10). �

Recall the definition of Vi from (2.3). Let us take 0 < η′ < η and let Ṽi,
1 ≤ i ≤ K, be the connected component of

{ξ ∈ Wi : Φ(ξ) < H − η′}

containing Vi. Then, we can obtain the following L2-estimate for φε − λε, i on the

extended valley Ṽi, for all 1 ≤ i ≤ K.

Lemma 5.5. For all 1 ≤ i ≤ K, it holds that

‖φε − λε,i‖L2(Ṽi) = oε(1)λ
1
2
ε .

Proof. Define

λ̃ε,i =
1

|Ṽi|

∫
Ṽi
φε dξ ; 1 ≤ i ≤ K .

By using Poincaré’s inequality, as well as (3.4) and Lemma 5.4, we get that for all
1 ≤ i ≤ K,∫

Ṽi
|φε − λ̃ε,i|2 dξ ≤ C

∫
Ṽi
|Dφε|2 dξ ≤ C ε(d/2)−1 e−

η′
ε

∫
Ṽi

σε

τε
|Dφε|2 dξ

≤ C ε(d/2)−1 e−
η′
ε λε . (5.12)

Hence, we can derive∣∣∣λε,i − λ̃ε,i∣∣∣ =

∣∣∣∣ 1

|Vi|

∫
Vi

(φε − λ̃ε,i) dξ
∣∣∣∣ ≤ C

[∫
Ṽi
|φε − λ̃ε,i|2 dξ

] 1
2

= oε(1)λ
1
2
ε . (5.13)

Now, combining (5.12) and (5.13) completes the proof of lemma. �

The next step is to enhance the previous L2-estimate on extended valley Ṽi to the
L∞-estimated on the original valley Vi. The proof is based on the elliptic estimate
on φε, and on a bootstrapping argument. Let us fix p ∈ (d, ∞) from now on, and
regard p just as a constant.

Lemma 5.6. For all 1 ≤ i ≤ K, it holds that,

‖φε − λε,i‖L∞(Vi) ≤ oε(1)
(
1 + λ

1− 1
p

ε

)
.

Proof. We fix 1 ≤ i ≤ K. On the set Wi, the function φε satisfies

−div

(
σε

τε
Dφε

)
=

ci
|Vi|

χVi .

This equation can be rewritten as

−∆(φε − λε,i) = −1

ε
div [(φε − λε,i)DΦ] +

1

ε
(φε − λε,i) ∆Φ +

τε
σε

ci
|Vi|

χVi ,
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and, therefore, standard regularity estimates for elliptic PDE (cf. [5, Theorem
8.17]) imply

‖φε − λε,i‖L∞(Vi) ≤ C ‖φε − λε,i‖L2(Ṽi) +
C

ε
‖φε − λε,i‖Lp(Ṽi) + C

∥∥∥ τε
σε

∥∥∥
L∞(Vi)

,

since p ∈ (d,∞). By Lemma 5.5 and Hölder’s inequality, (similar argument to [3,
(3.31)]) we obtain

‖φε − λε,i‖L∞(Vi) ≤ oε(1)

[
λ

1
2
ε + C ‖φε − λε,i‖

1− 2
p

L∞(Ṽi)
λ

1
p
ε + 1

]
. (5.14)

Recall the definition of µε from (5.8) and write µε = µε,k where k is either 1 or 2.
Then, we obtain

‖φε − λε,i‖L∞(Ṽi) ≤ 2µε = 2µε,k ≤ 2 |λε,k| + 2 ‖φε − λε,k‖L∞(Vk)

= 2λε + 2 ‖φε − λε,k‖L∞(Vk) . (5.15)

By inserting this result into (5.14) with i = k, we derive

‖φε − λε,k‖L∞(Vk) ≤ oε(1)

[
1 + 2 ‖φε − λε,k‖

1− 2
p

L∞(Vk) λ
1
p
ε + λ

1− 1
p

ε + λ
1
2
ε

]
.

Therefore, by Hölder’s inequality, we conclude that

‖φε − λε,k‖L∞(Vk) ≤ oε(1)
(
1 + λ

1− 1
p

ε

)
. (5.16)

By inserting (5.16) into (5.15), we obtain,

‖φε − λε,i‖L∞(Ṽi) ≤ 2λε + oε(1)
(
1 + λ

1− 1
p

ε

)
. (5.17)

Finally, the proof of lemma is completed by inserting this into (5.14). �

In view of the previous lemma, it is important to prove that λε is bounded by
a constant for small enough ε. Indeed, we are able to establish more than this, as
in the following lemma. The following lemma is the most renovative part of the
current paper.

Lemma 5.7. We have that,

lim
ε→0

λε = −1

2
Dc(b) =

1

2
D(b) .

Proof. Recall b ∈ M−1c from the statement of theorem. Hence, by (5.3), the
second identity of the lemma is obvious.

Now we focus on the first identity of the lemma. Let ϕεb be the minimizer of the
variational problem on the left-hand-side of (4.3). Since I[φε] = −λε by Lemma
5.4 and since φε is the minimizer of I[φ], by Theorem 4.2, we obtain

− λε = I[φε] ≤ I[ϕεb] =
1

2

∫
Rd

σε

τε
|Dϕεb|2 dξ −

K∑
i=1

cibi =
1

2
Dc(b) + oε(1) .

(5.18)
Therefore, we get

lim inf
ε→0

λε ≥ −
1

2
Dc(b) =

1

2
D(b) > 0 , (5.19)

where the last inequality is strict since c 6= 0. This proves the half of the first
identity.
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Figure 2. Illustration of the piecewise linear function Γ(x): In this
example, B1,3 and B4,5 are good sets, since (β1, β2, β3) and (β4, β5)
form cluster in the sense defined in (5.21), and accordingly, we have
j1 = 3 and j2 = 5. In (5.22) we show that the slope of each piece is
bounded by 1 + oL(1).

We now have to prove the reverse inequality, namely,

lim sup
ε→0

λε ≤ −
1

2
Dc(b) . (5.20)

This is the crux of the proof. Let β1 ≤ β2 ≤ · · · ≤ βK be the enumeration of

the numbers
λε,1
λε

, · · · , λε,K
λε

. Strictly speaking, βi = βi,ε, but we will ignore the
dependency on ε for the time being. Fix δ > 0 and L > 2. We now introduce an
auxiliary function Γ(x). We refer to Figure 2 for the visualization of the construction
below. For 1 ≤ i ≤ j ≤ K, we say that Bi,j = {βk : i ≤ k ≤ j} is a good set if{

βk+1 − βk ≤ Lkδ for i ≤ k ≤ j − 1 ,

βk+1 − βk > Lkδ for k = i− 1 and k = j ,
(5.21)

where β0 := −∞ and βK+1 :=∞. Enumerate all good sets by

Bj0+1,j1 , Bj1+1,j2 , · · · , BjM−1+1,jM ,

where j0 := 0 and jM := K. For 1 ≤ k ≤M , define

Ik = [βjk−1+1 − δ, βjk + δ, ] .

We now define a piecewise linear function Γ = Γε,δ,L : R→ R by:

Γ(x) =



x+ δ if x ∈ (−∞, β1 − δ)
βjk−1+1 if x ∈ Ik, 1 ≤ k ≤M

βjk−1+1 +
βjk+1 − βjk−1+1

βjk+1 − βjk − 2δ
(x− (βjk + δ))

if x ∈ (βjk + δ, βjk+1 − δ),
1 ≤ k ≤M − 1

x− (βK + δ) + βjM−1+1 if x ∈ (βK + δ, ∞) .
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By construction, the function Γ is continuous. Now we estimate the slope of Γ on
the interval (βjk + δ, βjk+1 − δ). By (5.21),

βjk+1 − βjk−1+1

βjk+1 − βjk − 2δ
=

βjk+1 − βjk +
∑jk−1
i=jk−1+1(βi+1 − βi)

βjk+1 − βjk − 2δ

<
Ljkδ +

∑jk−1
i=jk−1+1 L

iδ

Ljkδ − 2δ
<

Ljk +KLjk−1

Ljk − 2
.

Hence, since L > 2, we conclude that

‖Γ′‖∞ ≤ 1 +
K + 2

L− 2
= 1 + oL(1) , (5.22)

where oL(1) is a term vanishing when L→∞ and independent of ε and δ. Finally,
observe that Γ is constant on intervals of the form [(λε,i/λε) − δ, (λε,i/λε) + δ],
1 ≤ i ≤ K, and denote that constant by γi = γε,δ,L,i. Then, we obtain,∣∣∣∣γi − λε,i

λε

∣∣∣∣ ≤ max
1≤k≤M

(βjk − βjk−1+1) ≤ max
1≤k≤M

jk−1∑
i=jk−1+1

Liδ ≤ KLKδ . (5.23)

Define
g := (γ1, γ2, · · · , γK) .

Then, since g · c = γ1− γ2 and since λε,1 = −λε,2 = λε, we deduce from (5.23) that

|g · c− 2 | ≤ 2KLKδ . (5.24)

Now, define

φ̂ = φ̂ε,δ,L := Γ

(
φε

λε

)
.

Then, in view of Lemma 5.6, (5.19), and (5.23), we have that φ̂ ∈ Fg (cf. (4.2))
for all sufficiently small ε. Assume from now on that ε is small enough so that this
condition is valid. (Hence, we should send ε → 0 before taking any limit for δ or
L.) Then, by Theorem 4.2 and (5.24),

1

2

∫
Rd

σε

τε

∣∣∣Dφ̂ ∣∣∣2 dξ ≥ 1 + oε(1)

2
D(g) =

1 + oε(1)

2λ2
ε

D(λεg)

=
1 + oε(1)

λ2
ε

[
1

2
Dc(λε g) + λε (g · c)

]
≥ 1 + oε(1)

λ2
ε

[
1

2
Dc(λεg) + λε (2− 2KLKδ)

]
.

On the other hand, by (5.22) and by Lemma 5.4,

1

2

∫
Rd

σε

τε

∣∣∣Dφ̂ ∣∣∣2 dξ ≤ 1 + oL(1)

2λ2
ε

∫
Rd

σε

τε
|Dφε|2 dξ =

1 + oL(1)

λε
.

Combining those two inequalities, we obtain

1 + oL(1)

λε
≥ 1 + oε(1)

λ2
ε

[
1

2
Dc(λεg) + λε (2− 2KLKδ)

]
.

We select ε small enough so that the oε(1) term is greater than −1. Then, we can
re-organize the previous inequality as[

(1− 2KLKδ) + oε(1) + oL(1)
]
λε ≤ −

1

2
Dc(λεg) ≤ −1

2
Dc(b) , (5.25)
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since b = M−1c is the minimizer of Dc by Lemma 5.2. Now take L large enough
so that oL(1) < 1/3 and then take δ small enough so that 2KLKδ < 1/3. In this
way, the quantity in brackets converges to a positive number as ε → 0. Then, by
taking lim supε→0 in the previous inequality, we obtain[

1− 2KLKδ − oL(1)
]

lim sup
ε→0

λε ≤ −
1

2
Dc(b) .

Finally, send δ → 0 and then L→∞ to conclude (5.20). This finished the proof. �

As a direct consequence of the previous lemma, we obtain the following bound-
edness results.

Corollary 5.8. There exist constants C > 0 and ε0 > 0 such that, for all ε ∈
(0, ε0),

λε ≤ C and |λε,i| ≤ C ; 1 ≤ i ≤ K .

Proof. The first inequality is immediate from Lemma 5.7. By this inequality and
Lemma 5.6, we can conclude that |µε − λε| = oε(1). This implies the second
inequality of the corollary since |λε,i| ≤ µε ≤ λε + oε(1). �

Now we arrive the last ingredient for the proof of Theorem 5.3

Lemma 5.9. Define lε = (λε,1, λε,2, · · · , λε,K). Then, we have that,

lim
ε→0
Dc(lε) = Dc(b) .

Proof. By (5.23) and the boundedness of λε,i obtained in the previous corollary, we
have

|Dc(λεg) − Dc(lε)| ≤ C(L2Kδ2 + LKδ) (5.26)

for some constant C > 0. Combining this bound and the first inequality of (5.25)
yields

Dc(lε) ≤ −2
[
1− 2KLKδ + oL(1) + oε(1)

]
λε + C(L2Kδ2 + LKδ) .

Thus, by Lemma 5.7

lim sup
ε→0

Dc(lε) ≤
[
1− 2KLKδ − oL(1)

]
Dc(b) + C(L2Kδ2 + LKδ)

By letting δ → 0 and then L→∞, we deduce

lim sup
ε→0

Dc(lε) ≤ Dc(b) . (5.27)

On the other hand, we know by Lemma 5.2 that Dc(lε) ≥ Dc(b) and thus,

lim inf
ε→0

Dc(lε) ≥ Dc(b) . (5.28)

Hence, by (5.27) and (5.28), we can finish the proof of lemma. �

Now we arrived at the final stage of the proof.

Proof of Theorem 5.3. By Lemma 5.9, we can write Dc(lε) = Dc(b) + oε(1). By
the second part of Lemma 5.2, there exists tε ∈ R such that

|(λi,ε − tε)− bi| = oε(1) for all 1 ≤ i ≤ K . (5.29)

We now define ψε := φε− tε, and claim that ψε satisfies all the requirements of the
theorem.
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First, the condition (5.4) holds for φε since this function is chosen as a minimizer
if the functional I defined in (5.7). Hence, the condition (5.4) is also valid for ψε

as well since tε is merely a constant so that Dφε = Dψε. Second, we can deduce
(5.5) for φε by combining Lemma 5.4 and Corollary 5.8. By the same reason as
above, the condition (5.5) also holds for ψε as well. Finally, the condition (5.6) is
immediately follows from (5.29). �

6. Proof of Theorem 2.1

The proof of Theorem 2.1 is similar to the proof of [3, Theorem 3.7] and we
present it below for sake of completeness.

Proof of Theorem 2.1. Define A1 = {ξ : Φ(ξ) ≥ H + 1} and A2 = {ξ : Φ(ξ) ≥
H + 2}. Let ζ : Rd → [0, 1] be a smooth cutoff function such that ζ ≡ 1 on A1 and
ζ ≡ 0 on (A2)c.

Fix b ∈ RK \ N and let c = Mb(6= 0). Then, denote by ψε the function in
Theorem 5.3 with c ∈ R and b ∈ M−1c Let f = f(x, t) ∈ C∞(UT ) be a smooth
test function. Multiplying (3.5) by ζfψε and integrating by parts, we obtain∫ T

0

∫
U

∫
A2

ζfψερεt dξdxdt +

∫ T

0

∫
U

∫
A2

ψεζaDxf ·Dxρ
ε dξdxdt

= −
∫ T

0

∫
U

∫
A2

σε

τ ε
fDξu

ε ·Dξ(ζψ
ε) dξdxdt . (6.1)

Now we consider three integrals in (6.1) separately.
Write A = V1 ∪ · · · ∪ VK . Then, the first integral of (6.1) can be split into∫ T

0

∫
U

∫
A
ζfψερεt dξdxdt +

∫ T

0

∫
U

∫
A2\A

ζfψερεt dξdxdt . (6.2)

Since ζ ≡ 1 on A, by (3.10) and by (5.6), we get∫ T

0

∫
U

∫
A
ζfψερεt dξdxdt = [1 + oε(1)]

K∑
i=1

∫ T

0

∫
U

∫
Vi
fbiρ

ε
t dξdxdt

−→
∫ T

0

∫
U

f

K∑
i=1

bi∂tαi dxdt . (6.3)

The second term of (6.2) becomes negligible since, by (3.12),∣∣∣∣∣
∫ T

0

∫
A2\A

ζfψερεt dξdt

∣∣∣∣∣ ≤ C

∫ T

0

∫
∆

|ρεt| dξdxdt→ 0. (6.4)

Now we consider the second integral of (6.1). Similarly, we split it into an integral
on A and A2 \A respectively. Then, by (3.13), it is easy to verify that the integral
on A2 \ A vanishes as ε→ 0, while by (3.11) the integral on A converges to∫ T

0

∫
U

Dxf ·
K∑
i=1

aibiDxαi dxdt = −
∫ T

0

∫
U

f ·
K∑
i=1

aibi ∆xαi dxdt (6.5)

as ε→ 0.
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Finally, integrating by parts again, the last term in (6.1) becomes∫ T

0

∫
U

∫
A2

σε

τ ε
f [−ψεDξu

ε + uεDξψ
ε] ·Dξζ dξdxdt

+

∫ T

0

∫
U

∫
A2

fζuεdivξ

[
σε

τ ε
Dξψ

ε

]
dξdxdt . (6.6)

We claim that the first term is negligible. To this end, since Dξζ ≡ 0 on A1, by
(3.6), by (5.5), the square of this integral is bounded by

C

∫ T

0

∫
U

∫
Ac1

σε

τ ε
dξdxdt

∫ T

0

∫
U

∫
Ac1

σε

τ ε

[
|Dξu

ε|2 + |Dξψ
ε|2
]
dξdxdt .

In the last expression, the first integral vanishes as ε → 0 by Lemma 3.2, and the
second integral is bounded because of (3.7) and (5.5). This proves the claim. On
the other hand, by Theorem 5.3 and (3.14), the second integral of (6.6) converges
to

−
∫ T

0

∫
U

K∑
i=1

fci
αi
µ̂i
dxdt =

∫ T

0

∫
U

f

K∑
i,j=1

αiri,j(bj − bi) dxdt . (6.7)

By combining (6.1), (6.3), (6.5) and (6.7), we obtain∫ T

0

∫
U

f

K∑
i=1

bi (∂tαi − ai∆xαi) dxdt =

∫ T

0

∫
U

f

K∑
i,j=1

αiri,j(bj − bi) dxdt .

Now we select b = ei for 1 ≤ i ≤ K. Then, the previous identity implies that

∂tαi − ai∆xαi =

K∑
j=1

(rj,iαj − ri,jαi) .

This completes the proof. �

Appendix: Proof of Lemmas 3.3 and 3.4

Proof of Lemma 3.3. First of all, (3.6) follows from the assumption 0 ≤ uε0 ≤ C
and from the maximum principle applied to (3.5)

As for the energy estimate (3.7), multiplying (3.5) by uε and integrating over
[0, t]× Rd × U (where t is fixed), we get∫ t

0

∫
Rd

∫
U

σε uεt u
ε dξdxdt−

∫ t

0

∫
Rd

∫
U

σε a (∆xu
ε)uε dξdxdt

=
1

τε

∫ t

0

∫
Rd

∫
U

divξ[σ
εDξu

ε]uε dξdxdt .

Using σεuεtu
ε = 1

2σ
ε∂t |uε|, the first term becomes∫ t

0

∫
Rd

∫
U

σε uεt u
ε dξdxdt

=
1

2

∫
Rd

∫
U

σε |uε(x, ξ, t)|2 dξdx− 1

2

∫
Rd

∫
U

σε |uε0|
2
dξdx .
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Applying the divergence theorem with respect to x (note that there are no boundary

terms since ∂uε

∂ν = 0 on ∂U × Rd × (0, t)), the second term becomes

−
∫ t

0

∫
Rd

∫
U

σε a (∆xu
ε)uε dξdxdt =

∫ t

0

∫
Rd

∫
U

σε a |Dxu
ε|2 dξdxdt .

Lastly, integrating by parts with respect to ξ (there are again no boundary terms),
the term on the right becomes

1

τε

∫ t

0

∫
Rd

∫
U

divξ[σ
εDξu

ε]uε dξdxdt = − 1

τε

∫ t

0

∫
Rd

∫
U

σε |Dξu
ε|2 dξdxdt .

Putting everything together, we obtain

1

2

∫
Rd

∫
U

σε |uε(x, ξ, t)|2 dξdx +

∫ t

0

∫
Rd

∫
U

σε
(
a |Dxu

ε|2 +
1

τε
|Dξu

ε|
)
dξdxdt

=
1

2

∫
Rd

∫
U

σε |uε0|
2
dξdx .

By our assumption (2.11) on the initial data uε0, the right-hand-side is bounded,
and therefore, taking the supremum over t ∈ [0, T ], we obtain

sup
0≤t≤T

∫
Rd

∫
U

σε |uε|2 dξdx+

∫ T

0

∫
Rd

∫
U

σε
(
a |Dxu

ε|2 +
1

τε
|Dξu

ε|2
)
dξdxdt ≤ C .

This gives us one part of our desired estimate; to obtain the other part, multiply
(3.5) by uεt and integrate to obtain∫ t

0

∫
Rd

∫
U

σε |uεt|
2
dξdxdt−

∫ t

0

∫
Rd

∫
U

a σε (∆xu
ε)uεt dξdxdt

=
1

τε

∫ t

0

∫
Rd

∫
U

divξ [σεDξu
ε]uεt dξdxdt . (6.8)

The first term stays as it is; as for the second integral, integrating by parts with
respect to x and using Dxu

ε ·Dxu
ε
t = 1

2∂t |Dxu
ε|2, we can deduce that it equals to

1

2

∫
Rd

∫
U

a σε |Dxu
ε(x, ξ, t)|2 dxdξ − 1

2

∫
Rd

∫
U

a σε |Dxu
ε
0|

2
dxdξ .

Similarly, for the last term of (6.8), integrating by parts with respect to ξ, we can
rewrite it as

− 1

2τε

∫
Rd

∫
U

σε |Dξu
ε(x, ξ, t)|2 dxdξ +

1

2τε

∫
Rd

∫
U

σε |Dξu
ε
0|

2
dxdξ .

Putting everything together, we get∫ t

0

∫
Rd

∫
U

σε |uεt|
2
dξdxdt

+
1

2

∫
Rd

∫
U

σε
(
a |Dxu

ε(x, ξ, t)|2 +
1

τε
|Dξu

ε(x, ξ, t)|2
)
dxdξ

=
1

2

∫
Rd

∫
U

σε
(
a |Dxu

ε
0|

2
+

1

τε
|Dξu

ε
0|

2

)
dxdξ .
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Now again, by our assumption (2.11) on the initial condition, the right-hand side
is bounded, and finally taking the supremum over t, we obtain

sup
0≤t≤T

∫
Rd

∫
U

σε
(
a |Dxu

ε(x, ξ, t)|2 +
1

τε
|Dξu

ε(x, ξ, t)|2
)
dxdξ

+

∫ T

0

∫
Rd

∫
U

σε |uεt|
2
dξdxdt ≤ C ,

which, combined with the above and the fact that a ≥ a0 > 0, gives our desired
estimate. �

Proof of Lemma 3.4. Writing ρε = uεσε =
(

(uε)
2
σε
) 1

2 · (σε)
1
2 , we get

sup
0≤t≤T

(∫
∆

∫
U

|ρε| dxdξ
)2

≤ sup
0≤t≤T

(∫
Rd

∫
U

|uε|2 σε dxdξ
)(∫

∆

σε dξ

)
→ 0 .

This follows because the first term on the right-hand-side is bounded by Lemma
3.3, and because the second term on the right-hand-side goes to 0 by (3.2) and
(3.3). Hence (3.9) follows.

Similarly, we deduce

sup
0≤t≤T

(∫
∆

∫
U

|Dxρ
ε| dxdξ

)2

≤ sup
0≤t≤T

(∫
Rd

∫
U

|Dxu
ε|2 σε dxdξ

)(∫
∆

σε dξ

)
→ 0

from which (3.13) follows, as well as∫ T

0

(∫
∆

∫
U

|ρεt| dxdξ
)2

dt ≤
∫ T

0

(∫
Rd

∫
D

|uεt|
2
σε dxdξ

)(∫
∆

σε dξ

)
dt → 0

from which (3.12) follows.
Now define αεi = αεi(x, t) by

αεi(x, t) :=

∫
Vi
ρε(x, ξ, t) dξ =

∫
Vi
uε(x, ξ, t)σε dξ .

In the same way as above, but this time using that
∫
Vi σ

εdξ ≤
∫
Rd σ

ε = 1, we get∫ T

0

∫
U

|αεi | dxdt ≤
∫ T

0

(∫
Vi

∫
U

|uε|2 σε dxdξ
)(∫

Vi
σε dξ

)
dt ≤ C ,∫ T

0

∫
U

∣∣αεi,t∣∣ dxdt ≤ ∫ T

0

(∫
Vi

∫
U

|uεt|
2
σε dxdξ

)(∫
Vi
σε dξ

)
dt ≤ C , and∫ T

0

∫
U

|Dxα
ε
i | dxdt ≤

∫ T

0

(∫
Vi

∫
U

|Dxu
ε|2 σε dxdξ

)(∫
Vi
σε dξ

)
dt ≤ C .

Hence for each i, {αεi} is bounded in H1(U × [0, T ]), a reflexive Banach space,
and so by weak compactness, we can extract a subsequence {εn}∞n=1 with εn → 0
as n → ∞, such that, for some limit functions αi = αi(x, t), we have αεni ⇀ αi
weakly in H1(U × [0, T ]) as n→∞. The results (3.8), (3.10), (3.11) then follow by
construction.
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Finally, for (3.14), notice that∫
Vi

∫
U

|Dξu
ε| dxdξ ≤

(∫
Vi

∫
U

σε

τε
|Dξu

ε|2 dxdξ
) 1

2
(∫
Vi

τε
σε
dξ

) 1
2

≤ C

(∫
Vi

τε
σε
dξ

) 1
2

To show that the last integral converges to 0 as ε→ 0, we have∫
Vi

τε
σε
dξ =

1

ε
e−

H−h
ε [1 + oε(1)] e−

h
ε (2πε)

d
2 µ

∫
Vi
e

Φ
ε dξ

≤ 1

ε
e−

H
ε [1 + oε(1)] (2πε)

d
2 µ e

H−η
ε |Vi| =

1

ε
e−

η
ε [1 + oε(1)] (2πε)

d
2 µ |Vi| ,

where the first identity follows from the definitions of τε, σ
ε, and Zε, and (3.3). Since

η > 0 the last term converges to 0 as ε→ 0. Therefore, it follows that, on Vi × U ,
uε → ui a.e. for some function ui = ui(x, t). But using ρε = σεuε, integrating with
respect to ξ on Vi and using

∫
Vi σ

ε dξ = µ̂i, we finally obtain ui = αi
µ̂i

. �
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