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ASYMPTOTICS FOR SCALED KRAMERS-SMOLUCHOWSKI
EQUATIONS IN SEVERAL DIMENSIONS WITH GENERAL
POTENTIALS

INSUK SEO AND PEYAM TABRIZIAN

ABSTRACT. In this paper, we generalize the results of Evans and Tabrizian [3],
by deriving asymptotics for the time-rescaled Kramers-Smoluchowski equa-
tions, in the case of a general non-symmetric potential function with multiple
wells. The asymptotic limit is described by a system of reaction-diffusion equa-
tions whose coefficients are determined by the Kramers constants at the saddle
points of the potential function and the Hessians of the potential function at
global minima.

1. INTRODUCTION

In this paper, we consider the following Kramers-Smoluchowski equation

{Te (05 — alpp®) = div [Dpf + 1p°D®] in U x R% x [0, 7], an

P = po on U x R? x {t =0},

where € > 0 is a scaling parameter, p¢ = p(z,{,t) is the chemical density, and
® = ®(¢) is a smooth potential function on RY with multiple wells. This PDE
models a simple chemical reaction on the atomic level. For more information on
the chemical background, consult [I3], [I6] and the references therein.

Our primary concern is the limiting behavior of p¢ when e tends to 0. In this
paper, we show that the asymptotic limit of p¢ satisfies a system of reaction-diffusion
equations. See Theorem for the rigorous formulation of this result.

The one-dimensional case d = 1 has already been investigated in [13| 14}, [ [J.
In those works, ® is assumed to be an even potential function with two wells, and
the limit of p¢ is derived using tools such as I'-convergence [13| [I4], a Raleigh-type
dissipation functional [6], and a Wasserstein gradient flow [I]. We refer to [3] [16]
for more detailed survey of the history of the one-dimensional problem.

In [3], Evans and Tabrizian developed a new and direct approach for this prob-
lem, based on a clever test function that satisfies an elliptic PDE, as well as using
capacity estimates from [2]. The techniques in [3] are robust enough to be general-
ized in higher dimensions, where ® is a double-well potential on R?. The limitation,
however, is that it only works for the case where ® is symmetric. In this paper,
we remove the symmetry-assumption and further allow ® to have more than two
wells. In that case, our analysis becomes more delicate, and requires a generalized
version of variational principle in [3], which is Theorem of the current paper.
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We note that a similar result to the current paper has recently been derived by [12]
using tools from semiclassical analysis.

We would like to emphasize that the tools developed in Theorem are also
useful for analyzing metastable random processes, which are processes with mul-
tiple stable equilibria. It has been noted in [7, 8, [T}, 5] that, by investigating
the inhomogeneous version of our main theorem (Theorem , one can obtain a
complete analysis of the metastability of such processes. In addition, this method
turns out to be extremely effective in the investigation of metastable diffusions.
Two recent papers [111 [I5] obtained scaling limits of metastable diffusions known
as small random perturbations of dynamical systems. Although such a scaling limit
has already been developed for a wide class of metastable Markov chains, it has
not been previously known for metastable diffusions.

Our paper is organized as follows: In Section |2 we introduce the detailed model
and our assumptions on @, as well as the main result of this paper. In Section[3] we
derive some preliminary estimates, in Section [4] we state and prove the generalized
variational principle mentioned above, and in Section [5| we construct the auxiliary
test function. Finally, Section [6] contains the proof of our main result.

2. MODEL AND MAIN RESULT

2.1. Potential ®. Let ® : R — R be a smooth potential function with multi-
ple minima. In this section, we state our assumptions on ®, and introduce some
notation about the structure of its valleys.

First, we assume that ®(£) grows to +0o as || = oco. Furthermore, suppose ®
has exponentially tight level sets, meaning that for all a > 0 there exists a constant
C(a) > 0 such that

/ e~ PE@)/ede < Cla)e™ e (2.1)
{&:@(§)>a}
for all € € (0,1). Note that ([2.1)) is achieved if ® grows at least linearly as |¢] — oc.
Moreover, as observed in [2, Assumption H.1], (2.1)) is also valid if

liminf |[V®(¢)| = liminf [|[VP(E)| — 2AP(E)] = oo

E—o0 E—o0

Now we introduce the inter-valley structure corresponding to the potential func-

tion ®. We refer to Figure [I| for the illustration of the definitions below. We will

assume that ® has finitely many critical points and achieves minimum at several
points. This feature can be characterized more precisely by first defining the valleys

of ®. Fix H € R and let S = {01, 09, -+, o1} be the set of saddle points of &
with height H, i.e., (o) = H.
Denote by Wi, W, --- , Wk the connected components/valleyi of the set {& :

®(¢) < H}. Assume that Wi UWso U --- U Wk is connected (here A is the closure
of the set A).

The minimum of ® on the valley W;, 1 < i < K, is achieved at m; € W; and we
suppose that

O(my) =P(mg)=---=P(mg)=h
so that valleys Wi, Wh, --- , Wik have the same depth H — h. Hence, mq, ---, mg
are minima of ®.
Let

Si;=W:NW;CS ;1<i#j<K (2.2)
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FIGURE 1. (Left) An example of the potential function ® with four
valleys, i.e., K = 4. (Right) Visualization of the inter-valley structure
corresponding to ®.

be the set of saddle points between valleys W; and W;. We select small enough
n € (0, H — h) so that there is no critical point £ of ® such that ®(&) € (H —n, H).
Fix such n and define

Vi={{eW: o) <H-n} ; 1<i<K. (2.3)

Then, the set V;, 1 <i < K, is connected. Define

K (&
A= (U vi> . (2.4)

Finally, we assume that, for each saddle point o € S, the Hessian (D?D)(a) has one
negative eigenvalue —\, and (d — 1) positive eigenvalues, and for each minimum
m;, 1 <1 < K, the Hessian (ng)) (m;) is non-degenerate.

2.2. Kramers-Smoluchowski equation. We now describe the scaled Kramers-
Smoluchowski equation. Define

Te=e tem N/ and o°(¢) = Z7te 2O/ (2.5)

where the normalizing factor Z. is defined by

26:/ e~/ qe (2.6)
R4

so that [, 0°d¢ = 1. Note that Z. < oo because of (2.1)).

Let U be a bounded, smooth domain in R” for some n € N and let %—’f = Dy pt-v
be the outward normal derivative along the boundary OU. Let a : R™ — R be a
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smooth and bounded function such that a(-) > ag > 0 for some constant ag. Fix
T > 0 and consider the equation

Te (p§ — aDgp®) = dive [Dep®+ 1p° De®] in U x RY x [0,77,

9 =0 on U x R4 x [0,T] , (2.7)
e = p on U x R? x {t =0} .
For 1 <i < K, we write
1 K
pi=—————, p= p;, and a; =a(m;). (2.8)

C L fdet(D2o) (m,) pt

For o € §, denote by A, the unique negative eigenvalue of the matrix Dg@(a), and
define the Kramers constant at o by

A\,
Ko = .
21y [ — det(D?@)(U)
Recall S; ; from (2.2)) and define
RKij= » ko i 1<i#j<K. (2.9)

0ES;,j
For convenience we set x;; = 0 for all 1 <14 < K. Define the rate constants by
i
rig=—*  1<i#j<K. (2.10)
i
Now we explain our assumptions on the initial data. Consider the normalized
initial data ¢ (. £)
Po\L,
ug(z, ) =
o<(§)
Then, we assume that ug is bounded on R, is differentiable with respect to z and
¢, and satisfies

1
/ / <|u6|2 + | Dyus|” + = D5u8|2> ofdxdf < oo. (2.11)
R JU Te

Finally, assume that, for smooth functions af, ---, a% : U — R, we have the

following convergence as € tends to 0:

ug(z,§) — ﬂa? locally uniformly in U x W; ; 1 <i< K .
Hi

Under this set of assumptions, we are now ready to state the main result of our
paper:
Theorem 2.1. For allt € [0,T], we have, in the sense of Remark

K
pf(x, & t)dE — Zai(x,t) Om;, as €—0, (2.12)

i=1
where the smooth functions aq, -+, ax on U x [0,T] solve the system of linear
reaction-diffusion equations given by
8tai — aiAai = Z]K:l(rjyiaj — rw-ai) in U x [O,T]
gos — on OU x [0, T (2.13)
a; =al ont=0
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foralll <i< K.

Remark 2.2. The weak convergence (2.12)) means that for all f = f(z,£,t) €
C(Ux Ax|[0,T]),

K
22%/[07T]/UApe(x,g,t)f(x,f,t)dgdxdt:/[OyT]/AZZ:;ai(x,t)f(x,mi,t)dxdt.

2.3. Graph structure of valleys and an associated Markov chain. The main
result described above is closely related to a Markov chain on a graph whose vertices
are the valleys of potential ®. More precisely, denote by V' = {1,2,---, K} the set
of vertices, in such a way that ¢ € V corresponds to the valley V;. Moreover,
two vertices i, j € V are connected by an edge if and only if W; N W, # ¢, or
equivalently ;; 7# 0. Denote by the G the resulting graph. Since we have assumed
that the set Wi, UW, U---UWfp is connected, the graph G is a connected graph.

Let {X; : t > 0} be a Markov chain on V' where the jump rate from i € V to
jeVisr; (cf ) Since 7;; = 0 if k; ; = 0, X becomes a Markov chain on
G. Define ‘

ﬁi::%forlgigK and p:= (A1, -, dK) -

Then, observe that the probability measure g on V is the invariant measure for
the Markov chain X3, and furthermore, the Markov chain is reversible with respect
to p in the sense that fi;r;; = fi;rj,; for all ¢ # j. The generator £ of this
Markov chain can be regarded as a linear operator on RX. More precisely, for
b= (b1, - ,bg) € RX the ith component of Lb € RX is given by

K
(ﬁb)Z = Zri’j(bj — bl) .

Remark 2.3. Assume that a =0 so that a;, 1 <1i < K, is a function of time only.
Then, define @;(t) = a;(t)/1;, and let a(t) = (Qy(t),--- ,ak(t)) € RE. Then, we
can deduce from (2.13)) that

da;

) = > (a0 - ) = (£a (), -

Therefore, a(t) = (a1(t), - ,ax(t)) is the marginal density of the Markov chain
X, with respect to the invariant measure p, whose starting (possibly deterministic)
measure is (9, -+ ,a%).

3. PRELIMINARY ESTIMATES

In this section, we state and prove estimates. Denote by 0.(1) the term vanishing
as € — 0.

Lemma 3.1. We have that

/ e PO/ de = (Lt o)) e (2me) P 1<i<K, (3.1)

Vi

/ e*‘b(@/edf — 06(1)6*}1/%‘1/2, and (3.2)
A

Z. = [1+0€<1)] e_h/e(271'€)d/2u- (33)
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Proof. The proof of (3.1 is an easy consequence of Laplace’s method. The estimate

(3.2) is a direct consequence of (2.1). Finally, (3.3) follows immediately from (3.1))
and (3.2]) because of the definition of Z, (cf. (2.6])) O

Lemma 3.2. For A C R, suppose that there exists ¢ > 0 such that ®(¢) > H + ¢

for all € € A. Then,
/1%=@m.
A Te

Proof. By (3.3),

o €
7 M40(1)] — H®)/e 3.4
~ = ol i (34
Hence, the lemma immediately follows from (2.1)). O

Now we establish several compactness estimates similar to [3| Section 3|. Let

c pf(z,&,t)
u(z,&,t) i= ———— .
(z,&,t) (@)
Then, by (2.7, the u¢ satisfies
uf —alAyut = —d1V§ { Dgu] . (3.5)

The next lemma is an energy estimate that is similar to that of [3, Lemma 3.1].
However, instead of skipping the proof, we refer the readers to the Appendix, since
the notation here is more involved than [3].

Lemma 3.3. For some constant C' > 0, we have the bound
0<u*<C onUxR?x[0,T] (3.6)

and the energy estimate
/ / |u6|2+|D ut]? 4+ 771 | Deuc| )cr dxdg
0<t<T R

—|—/ / /|u§|2aedxd£dt < C. (387
o JreJu

Define Ur = U x (0,T). We next develop some pre-compactness results similar
to [3, Lemmas 3.2 and 3.3]. Again, proofs can be found in the Appendix since they
are more involved.

Lemma 3.4. There exist a sequence {€,}52, of positive real numbers converging
to 0 and functions oy, ag, - , ax € H*(Ur) that satisfy the following:

(1) For all1 <i < K, we have that, as n — oo,

/ / (z,€,t) dedé — oi(x,t) weakly in L*(Ur) and (3.8)
sup [ 1o (.6 0)1d€ 0. (3.9)
0<t<T JA
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(2) For alll <i< K, we have that, as n — oo,
/ Oppr (w,&,1) dEé — Opas(x,t)  weakly in L*(Ur) , (3.10)
Vi

/ Dyp (x,&,t)dé — Dyay(x,t)  weakly in L*(Ur) , (3.11)
Vi

/ / |0 (w,&,t)| dadé — O strongly in L?(0,T) , and (3.12)
aJu

sup / / |Dyp (z,€,t)] ded§ — 0. (3.13)
0<t<TJA JU
(3) For allt €10,T), for all1 <i < K, and almost every x € U, we have that,
as € =0,
. a;(z,t)
u(z,&,t) — —— for almost every { € V; . (3.14)

(2

4. A VARIATIONAL PROBLEM

Throughout the rest of the paper, elements of R¥ are denoted by bold lower-
case letters such as a =(a1,-- - ,ar), and subsets of R¥ are denoted by bold capital
letters like A and B.

Define D : RE — R by

K
1 2 . K
D(b) = o g; ki (b —b)* s beRE. (4.1)
Note that D(b) = 0 implies by = by = - - - = bg since the graph G is connected.

Remark 4.1. The function D is the so-called Dirichlet form associated with the
generator L defined in Section[2.3 More precisely, we can write

K
D(b) =} jubi(~Lb);

For b = (b1, -+, bx) € R define
?b:{qpeHl(Rd) |, = b, for alllgigK} : (4.2)

In the current and the next section, we only consider functions on R?, that is only
depending on £ and independent of the variable . Hence, for a function ¢ : R — R,
the notations D¢ and A¢ are used to represent D¢¢ and Ag¢, respectively. Then
the following result is a generalization of [2, Theorem 3.1].

Theorem 4.2. For any b € RE, we have that
inf / T \DYdg = [1+ 0.(1)] D(b) . (4.3)
[PISAN Rd Te
Proof. By (3.4) and definition of D(-) we can rewrite the identity (4.3)) as
9 d/2 K
inf e/ e Dyp2de = [1+ 0.(1)] e—iye 2m)T D kiglby —bi)? . (4.4)
Rd

peTp 2 =
1,j=1
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Denote by ¢}, the minimizer of the left-hand-side. Then, ¢j solves the following
Euler-Lagrange equation:

div{e“b/eDgpg} =0onA and ¢ =bonV;foralll <i< K.

For 1 <i <d, write e; = (0,---,0,1,0,---,0) the ith standard basis vector of R%.
Then, by linearity and uniqueness of the Euler-Lagrange equation, it follows that

d
o = > b, . (4.5)
=1

Therefore, we can write
K
e [ et gPds = 3o t2e [ D P
R Pt R

bOY wbe [ VD b )P (40)

1<iAj<K R

In [2| Theorem 3.1], it is shown that

K
€ /Rd e /e |D [Pde = [1+4 0e(1)] e /¢ (2me)4/? Z Kil - (4.7)
1=1

and that, for ¢ # j,

¢ / e~/ D(gs, + g5, )| d
Rd

= [L+o(D)]e e @re)®? " (ki +r). (48)

I<ISK :1#i,j
By (4.7) and (4.8), we have that
e [ e Dy Dy e = 1+ o] M 2n) P niy . (49)
Rd
We can complete the proof by combining (4.6]), (4.7) and (4.9). O

5. CONSTRUCTION OF THE TEST FUNCTION
5.1. Preliminaries. Let M be the symmetric K x K matrix defined by
My = {ilzl}il”i’l LT i<k,
— 3 Figj ifi#j
so that
D(x) = x'Mx . (5.1)
Define two subsets of R¥ by
N = {xeRF oy =xy=-- =2k},
R = {XERK:J;1+J:2+---+3:K:O}.

Lemma 5.1. The null-space and range of the matrix Ml are N and R respectively.
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Proof. Suppose that Mb = 0. Then, by we have D(b) = 0. Hence, b € N
as we observed in the line following . On the other hand, any b €N satisfies
Mb = 0. Hence, the null-space of M is N. Since the dimension of the null-space
is 1, that of the range of M must be (K — 1) dimensional. Since Zfil(Mb)i =0
for all b € RX | the range of M is a subset of R. Since dim(R) = K — 1, we can
conclude that R is the range of M. O

For c € R, write
M~'c={becR¥ :Mb =c}
Then, for b € M~ 'c, we can write M—'c = N + b. Hence, we can observe that

D(-) is a constant function on M~ 'ec.
Now define a function D, : RX — R by

De(x) = D(x) —2c-x. (5.2)
Then, by (5.1), for b € M~ !¢,
Do(b) = b-Mb—2c-b = —b-Mb = —D(b), (5.3)

and hence the function De(-) restricted to M~!c is a constant function as well. Let
us denote that constant by De(M~!c), with slight abuse of notation.

Lemma 5.2. Fizc € R. Then, D.(M~'c) is the minimum of Dc(-). Furthermore,
if De(x) < De(M~1c) +§ for some § > 0, then there exists by € M~tc such that
|x — bg| < CV/5 for some constant C > 0 not depending on 6.

Proof. Let b € M~ 'c. Then, since M is symmetric, it is easy to observe that for
any Xx,
Dc(x) = De(b)+ D(t) .

where t := x — b. The first part of the lemma follows since D is a non-negative
function. As for the second part, we must have D(t) < ¢, and hence, by continuity
of D and the fact that the nullspace of D is N, we can find ¢ € R such that
lt; —t| < CV06 for all 1 < i < K, where t; is such that t = (t1,--- ,tx). Then,
by :=b+ (t,t,--- ,t) € b+ N = M~!c fulfills the requirement of the second part
of the lemma. ]

5.2. Test function. Denote by y.4(:) the indicator function of the set A C R9.
We emphasize that the following construction of the test function ¢ is the main
ingredient in the proof of Theorem and contains most of technical difficulties
of the problem.

Theorem 5.3. Fiz a non-zero vector c € R and b € M~'c. Then, for each ¢ > 0,
there exists a function ¢¢ € W2P(RY) N L®(RY) for all p € [1,00) that satisfies the

loc
equation
o€ ¢
— div ( szf) =D v (5.4)
Te ; |V1|
and the uniform energy estimate
sup / z |Dy<]* < oo (5.5)
0<e<1J Ra Te
and finally,
lim sup sup |¢(&) —b;] = 0. (5.6)

=0 1<i<K eV
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The proof of this theorem is divided into several lemmas. We start by simplifying
the problem and by introducing relevant notions before starting these lemmas.

By linearity, it suffices to prove the theorem for ¢ = e; — e; for some i # j.
Therefore, without loss of generality, we assume that ¢ = e;—eq = (1,—1,0, --- ,0),
so that ¢; =1, co = —1, ¢; =0 for i > 3.

For ¢ € H} (R?), define a functional I by

1 ¢ 1 1
I[¢] = 5/Rd%|17¢|2 d¢ — Aps ¢ d¢ + wl ¢dg (5.7)

and let ¢¢ be a minimizer of I[¢] on HlloC (R9). Then the Euler-Lagrange equation
for ¢¢ is (5.4) for ¢ = e; — ey € R¥, and moreover ¢¢ € W2P(R?) for all p € [1,00).

loc
For 1 <i < K, define
1
Aeyi = / o dE .
il

Since I[¢¢] = I[¢° + ] for all ¢ € R, we can assume without loss of generality that
/\5,1 = _>\e,2 = )\e .

Note that Ac > 0 since otherwise we can replace ¢¢ with —¢°. Let u.; =
SUD¢cy, |p¢(€)| and define

fre = max{fic 1, fe2} - (5.8)
Then we can assume that

sup [¢°(E)] = pe
£eRY

since otherwise, ¢¢ = A(¢) gives a lower value of I, where
—pe if s € (—00, —fie)
A(s)=1<s if s € [—pte, phe]
pe  if s € (e, 00)

With the simplification and notations above, we now start the proof of the The-
orem [5.3] The first step is the following lemma.

Lemma 5.4. We have that
/ T |D¢|2de = 2. .
Rd Te
Proof. First observe that, since ¢¢ is a minimizer, I[¢¢] < I[0], and so
/ T Do P de < 4. (5.9)
Rd Te

For R > 0, let Br := {¢ € R? : |¢| < R} and let (g : R? — [0, 1] be a smooth
cutoff function with compact support such that (g = 1 on Bg, and |D{g| < 1. Let
us select R large enough so that V; C Br for all 1 <i < K and ®(§) > H+ 1 on
(Br)¢ Then, multiplying by (r¢¢ and integrating by parts, we obtain

/ T\ Do Crde = me—/ %" 5 D - DCpde (5.10)
Rd Te Rd Te

Because |D(g| < 1, the square of the last term is bounded by

o€ €2 0:
(/meqs dg) (/(BR)C . df). (5.11)
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Note that by the assumption ®(¢) > H + 1 on (Bg)¢ and by Lemma the last
integral converges to 0 as R — oo Hence, by our priori bound (5.9)), the expression

in (5.11) vanishes as R — oo. Hence, the proof is completed by letting R — oo in
(-10). O

Recall the definition of V; from (2.3). Let us take 0 < 7 < 7 and let V;,
1 <i < K, be the connected component of
{eWi @) < H-n'}
containing V;. Then, we can obtain the following L2-estimate for ¢¢ — )., i on the

extended valley 172», foralll1 <i:< K.

Lemma 5.5. For all 1 <i < K, it holds that

1
||¢€_>‘E,i||L2(\7j) = 06(1)>‘€2 .

Proof. Define
~ 1

€,1

By using Poincaré’s inequality, as well as (3.4) and Lemma we get that for all
1<i<K,

/\7 l¢f — Al de < c/\7 |Doc|* de < ce<d/2>*1e*%'/~ %|D¢E\2 d¢

< CUDT1 N\ (5.12)

Hence, we can derive

1
~ 1 ~ _ 3
dei = ei| = | [0 =Fena < ¢ [ 1o -Faipac]
= 0 (1)AZ . (5.13)
Now, combining ([5.12)) and (5.13)) completes the proof of lemma. a

The next step is to enhance the previous L2-estimate on extended valley \71 to the
L*>-estimated on the original valley V;. The proof is based on the elliptic estimate
on ¢, and on a bootstrapping argument. Let us fix p € (d, 0o0) from now on, and
regard p just as a constant.

Lemma 5.6. For all 1 <i < K, it holds that,

€ 1-2
||¢ - )\E,i”Loo(vi) < 05(1) (1 + e p) .
Proof. We fix 1 <17 < K. On the set W;, the function ¢ satisfies

o€ ci
—div| —D¢¢ | = = -
e (Z0o) = o

This equation can be rewritten as

€ — 1 3 € _ . 1 € — 1 E i
TAW = Aa) = —CdVIT A DO+ 2(8° = Aei) A + T

XV;
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and, therefore, standard regularity estimates for elliptic PDE (cf. [5 Theorem
8.17]) imply

||¢E - >\67i||LOC(Vi) S C ||Q56 - /\e,i

Te

0—6

C .
sy + =19 Al + €| ey

since p € (d,0). By Lemma and Holder’s inequality, (similar argument to [3]
(3.31)]) we obtain

||Q56 - /\s,i

Recall the definition of p, from (5.8) and write g = p , where k is either 1 or 2.
Then, we obtain

H‘be - )‘w"

3 c -2 b
ey € 0e(1) | A2+ Cllof = Acill g ) A +1} : (5.14)

L@y S 2hHe = 2pen < 2kl + 2 165 = Ackll Lo )
= 2A 42| — )\g)k”Lm(vk) . (5.15)
By inserting this result into (5.14) with ¢ = k, we derive

. . 1—2 1 1—1 1
16° = Al ooy < 0e(1) |14+ 2[10° = Acll oty A + A 7 4+ A2
Therefore, by Holder’s inequality, we conclude that
€ 1-3
16 = Akl ey < 0c(1) (T4 7). (5.16)
By inserting (5.16)) into (5.15)), we obtain,
1—1
16° = Aesill oo () < 2Ae +0e(1) (T+Xe 7). (5.17)
Finally, the proof of lemma is completed by inserting this into ([5.14)). O

In view of the previous lemma, it is important to prove that A, is bounded by
a constant for small enough €. Indeed, we are able to establish more than this, as
in the following lemma. The following lemma is the most renovative part of the
current paper.

Lemma 5.7. We have that,
. 1 1
elg%)\e = —gDc(b) = §D(b).

Proof. Recall b € M~'c from the statement of theorem. Hence, by , the
second identity of the lemma is obvious.

Now we focus on the first identity of the lemma. Let ¢} be the minimizer of the
variational problem on the left-hand-side of (4.3). Since I[¢] = —A. by Lemma
and since ¢¢ is the minimizer of I[¢], by Theorem 4.2} we obtain

€ € 1 o° €12 & 1
A= 10 < Tl = 5 [ T IDGRdE = Y ab = 5De(b) + o).

2 Te i=1
(5.18)
Therefore, we get
1 1
liminf Ae > —=D.(b) = =D(b) > 0, (5.19)
e—0 2 2

where the last inequality is strict since ¢ # 0. This proves the half of the first
identity.



ASYMPTOTICS FOR SCALED KS EQUATION WITH GENERAL POTENTIAL 13

I(x)
 Ba=5 L+ L
SloPe_54—,83—26<1+L3—2 . __/
By \ ——————
b |
/315/52%‘1:5353'1"5 54—5/34 Bs Bs+6 51(31{4-5
b=d

<L§ <L* >1IL% < L4

FIGURE 2. Illustration of the piecewise linear function I'(xz): In this
example, Bis and Bss are good sets, since (01, 82,03) and (B, Bs)
form cluster in the sense defined in , and accordingly, we have
j1 =3 and j2 = 5. In we show that the slope of each piece is
bounded by 1+ or(1).

We now have to prove the reverse inequality, namely,

1
limsup A, < —§DC(b). (5.20)

e—0

This is the crux of the proof. Let 81 < fy < --- < Bk be the enumeration of
the numbers )‘/{:, e A;\’EK. Strictly speaking, 8; = f;,, but we will ignore the
dependency on € for the time being. Fix § > 0 and L > 2. We now introduce an
auxiliary function I'(z). We refer to Figure[2|for the visualization of the construction

below. For 1 <i < j < K, we say that B; ; = {f : i < k < j} is a good set if

Biy1 — Pr > L fork=i—1land k=7, '
where [y := —oo0 and Sk 41 := co. Enumerate all good sets by
Bijot1.41s Birttgor s Bin a1
where jo := 0 and jy := K. For 1 < k < M, define
Iy = [Bju_1+1 =6, Bj, +6,].
We now define a piecewise linear function I' = T%L : R — R by:
x+0 if x € (—o0, f1 — )
Bijr_1+1 ifrel, 1<k<M
I'(x) = a1 — B i . . _
( ) B‘jk71+1 + IBJk“Fl Bjk 1+1 (.13 _ (ﬁjk + 6)) ifxe (5]k +6, ﬁ]k*f’l 5)7

i1 — Bi — 20 1<k<M-1
= (Bx +6) + Bjas_1+1 if 2 € (Bx + 6, 00) .
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By construction, the function I' is continuous. Now we estimate the slope of I' on

the interval (8;, + 6, 8,41 — 6). By (b.21]),
j—1
ﬁjk+l - ﬁjk71+l _ Bjk"l‘l - ﬁ]k + Z‘zijk,1+1(ﬁi+l - ﬁl)

/Bjk"!‘l - 6]% -20 ﬁjk"l‘l - ﬂjk -2
Lo+ 30000 L' Liv 4 KLkt
Lik§ — 26 Lik — 92
Hence, since L > 2, we conclude that
K+2
Mo < 1+ L—fz = 1+or(1), (5.22)

where or,(1) is a term vanishing when L — oo and independent of € and §. Finally,
observe that I' is constant on intervals of the form [(Aei/Ae) — &, (Ae.i/Ae) + 6],
1 <14 < K, and denote that constant by v; = 7, s,1,;- Then, we obtain,

£\ Jrk—1 ‘
L €,7 L . < [3 < K . .
%= S max (B = Bioae) S max YL L' < KLFSL (529)
i=jr—1+1
Define

g = (71772a"' 7’YK) .
Then, since g- ¢ = 1 — 2 and since A\c1 = —Ac 2 = A¢, we deduce from ([5.23) that

lg-c—2| < 2KL%s. (5.24)
Now, define
n “e,8,L ¢E
= ¢ =T —|.
oo (%)

Then, in view of Lemma, (5.19]), and (5.23)), we have that qAS € Fg (cf. (4.2))

for all sufficiently small e. Assume from now on that ¢ is small enough so that this
condition is valid. (Hence, we should send € — 0 before taking any limit for ¢ or

L.) Then, by Theorem [1.2] and (5.24)),

1 [ o) ~2 1+ o0.(1) 1+ 0.(1)

- - > - e/ — - e\

5 [ Z|pa] 4 > o) - T oo
1+o0c(1) 1

= T [2 De(Aeg) + Ae (g C)]
S 1+ o0.(1) 1
- A2 2
On the other hand, by (5.22) and by Lemma [5.4]
1 o |, ~|? 14+ o0r(1) / o€ 9 14+ o0r(1)
= —D‘d<7 — | D¢ d¢ = —————=.
2/RdTE ¢ 5_ QAE Rd']—£| ¢| g )\e
Combining those two inequalities, we obtain
1 1 140(1) |1
+:L( ) > +;2( ) {QDC()\eg)Jr/\E (22KLK5)}

We select € small enough so that the o.(1) term is greater than —1. Then, we can
re-organize the previous inequality as

De(Aeg) + Ae (2 — 2KLK§)] :

(1= 2KL55) +0.(1) + o ()] A <~ De(Aeg) < —3Delb),  (5.29)
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since b = M~!c is the minimizer of D, by Lemma Now take L large enough
so that oz (1) < 1/3 and then take § small enough so that 2K L¥§ < 1/3. In this
way, the quantity in brackets converges to a positive number as ¢ — 0. Then, by
taking lim sup,_,, in the previous inequality, we obtain

[1-2KL"6—o0.(1)] limsup . < —% De(b) .

e—0

Finally, send § — 0 and then L — oo to conclude (5.20)). This finished the proof. [

As a direct consequence of the previous lemma, we obtain the following bound-
edness results.

Corollary 5.8. There exist constants C > 0 and €y > 0 such that, for all € €
(Oa 60)7
A< C and |Aei| <C; 1<i<K.

Proof. The first inequality is immediate from Lemma By this inequality and
Lemma we can conclude that |ue — Ac|] = o0c(1). This implies the second
inequality of the corollary since |Ac ;| < pte < Ac + 0¢(1). ]

Now we arrive the last ingredient for the proof of Theorem [5.3]

Lemma 5.9. Define lc = (Ac1, Ae2,- , Ae,x). Then, we have that,
E%Dc(le) = D.(b).

Proof. By and the boundedness of A, ; obtained in the previous corollary, we
have
[De(Aeg) — De(l)| < C(L*F6% + L*6) (5.26)

for some constant C' > 0. Combining this bound and the first inequality of
yields

De(le) < —2[1—2KL%5+o0(1) +oc(1)] Ae + C(L?" 6% + LKS) .
Thus, by Lemma

lim sup De(le) < [1-2KL%6—0r(1)] De(b) + C(L*"6% + L*6)

e—
By letting § — 0 and then L — oo, we deduce
limsupDe(le) < De(b) . (5.27)

e—0

On the other hand, we know by Lemma[5.2] that Dc(le) > Dc(b) and thus,

liminf De(l) > De(b) . (5.28)
€e—
Hence, by (5.27)) and (5.28]), we can finish the proof of lemma. O

Now we arrived at the final stage of the proof.

Proof of Theorem[5.3 By Lemma we can write D¢(le) = De(b) + o.(1). By
the second part of Lemma [5.2] there exists ¢ € R such that

((Aie —te) —bi| = o0c(1) foralll <i<K . (5.29)

We now define ¢°¢ := ¢ — t., and claim that ¢ satisfies all the requirements of the
theorem.
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First, the condition holds for ¢¢ since this function is chosen as a minimizer
if the functional I defined in . Hence, the condition is also valid for )¢
as well since t. is merely a constant so that D¢ = Dy, Second, we can deduce
for ¢¢ by combining Lemma and Corollary By the same reason as
above, the condition also holds for ¢ as well. Finally, the condition is
immediately follows from . t

6. PROOF OF THEOREM [2.1]

The proof of Theorem is similar to the proof of [3, Theorem 3.7] and we
present it below for sake of completeness.

Proof of Theorem[2.1. Define A; = {£ : ®(§) > H + 1} and Ay = {£ : (&) >
H +2}. Let ¢ : RY — [0, 1] be a smooth cutoff function such that ¢ =1 on A; and
¢ =0on (Ag)°.

Fix b € R\ N and let ¢ = Mb(# 0). Then, denote by v¢ the function in
Theorem [5.3| with ¢ € R and b € M~'c Let f = f(z,t) € C*°(Ur) be a smooth
test function. Multiplying by (f1° and integrating by parts, we obtain

/OT/U 5 Cfyeps dédadt + /OT/U 5 W CaDyf - Dypt dédadt

_ _/OT/U/,42 :—:fDEue-Dg(Cws)dfdxdt. (6.1)

Now we consider three integrals in (6.1]) separately.
Write A =V; U---UVg. Then, the first integral of (6.1]) can be split into

/OT/(JACf¢€p§d£d$dt+ /OT/U/AQ\ACfd,ep;dgdxdt. (6.2)

Since ( =1 on A, by (3.10) and by (5.6]), we get

/OT/U/Aéfwepi dédzdt = [1+ o0.(1)] é/OT/U/V fbips dédadt
T K
— /O /Uf;biatai dxdt . (6.3)

The second term of (6.2]) becomes negligible since, by (3.12]),

/O : /A | Chvpiacan

Now we consider the second integral of (6.1]). Similarly, we split it into an integral
on A and Aj \ A respectively. Then, by (3.13), it is easy to verify that the integral
on As \ A vanishes as e — 0, while by (3.11]) the integral on A converges to

T K T K
/ / Dof =Y aibiDyoy; dodt = 7/ /f~Zaibi Ay dedt (6.5)
o Ju i=1 0 JU =

as € — 0.

T
< C’/ / |pf| dédzdt — 0. (6.4)
0o Ja
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Finally, integrating by parts again, the last term in (6.1]) becomes
/ / / [~ Deu’ + uDeyp€| - DeC dédxdt
Ay Te

T €
+/O /U " feudive [iDm/f] d¢dzdt . (6.6)

We claim that the first term is negligible. To this end, since D¢¢ = 0 on A, by
(3.6). by (5.5). the square of this integral is bounded by

C/ //Acndgd:cdt/ // |D5u€| + | Dete| } dedzdt .

In the last expression, the first integral vanishes as ¢ — 0 by Lemma and the
second integral is bounded because of (3.7)) and (5.5). This proves the claim. On
the other hand, by Theorem and (3.14)), the second integral of converges

to
/ /chl dedt = / /fzam] b)dedt . (6.7)

1,j=1

By combining (6.1] , -, and (| -, we obtain
/ /be (Ora; — a; Apay;) dxdt = / / Z a;1r; (b — b;) dxdt .

7,7=1
Now we select b = e; for 1 < i < K. Then, the previous identity implies that

K
8,50[1‘ — aiAwai = E (T‘jﬂ'aj — Ti,jOéi) .

j=1

This completes the proof. ([l

APPENDIX: PROOF OF LEMMAS [3.3] AND [3.4]

Proof of Lemma[3.3 First of all, (3.6) follows from the assumption 0 < u§ < C
and from the maximum principle applied to (3.5]

As for the energy estimate (3.7)), multiplying (3.5) by u¢ and integrating over
[0,¢] x R? x U (where t is fixed), we get

¢ ¢
/ / /aﬁuguedédxdt—/ / /oea(Axue)uedgdacdt
o JraJu 0o JreJu
1 t
= —/ / /divda6 Deuf| u dédzdt .
Te Jo Jre JU
Using ouu® = 109, [u¢|, the first term becomes
¢
/ / /crE ug u® dédzdt
0 Jre
1 2 1 2
= - o u(z, &, t)|” dédx — = o lug|” dédx .
2 Jre Ju 2 Jre Ju
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Applying the divergence theorem with respect to « (note that there are no boundary

terms since ‘9% =0on 9U x R? x (0,t)), the second term becomes

//Rd/aaAu ut dedudt = //Rd/gamu‘ dedadt .

Lastly, integrating by parts with respect to £ (there are again no boundary terms),
the term on the right becomes

Lt I
— / / / dive[o® Deuf)uf dédaedt = —= / / / o |Deu|® dédadt .
Te Jo Jrd JU Te Jo Jrd JU
Putting everything together, we obtain
1 2 K
= o€ luf(z,&,t)|]” dédx + o [ a|Dyuf|? —|— |D§u | | dédxdt
2 Jra Ju o JreJu
= 7/ /06 lu§|* deéda .
2 Jra Ju

By our assumption (2.11)) on the initial data uf§, the right-hand-side is bounded,
and therefore, taking the supremum over ¢ € [0, T], we obtain

T
sup / /05\u5|2 dfdx—i—/ / /05< |Dyuf|? —|— |D5u | )d&dxdtﬁ C.
0<t<T JRrd JU 0 JRIJU

This gives us one part of our desired estimate; to obtain the other part, multiply
(3.5) by u§ and integrate to obtain

t t
// /05|uﬂ2 dfdxdt—// /aae(Awue)ugdgdxdt
0o JriJuU o JriJu
¢
:l// /div5[UED5u€}u§d£dxdt. (6.8)
Te Jo Jra JU

The first term stays as it is; as for the second integral, integrating by parts with
respect to x and using Dyu® - Dyus = %Bt |Dzu6|2, we can deduce that it equals to

1 1
f/ / ac | Dous(z, &, 8)° dads — 7/ / act |Dgcu8|2 dzd¢ .
2 RrRd JU 2 R JU

Similarly, for the last term of , integrating by parts with respect to &, we can

rewrite it as
1 2
o |Deud|” dxd€ .
o7 /Rd/U | Deug| 3

1 2
_ €D € t
5 | [ o parae)

Putting everything together, we get

t
€, €12
/O/Rd/a |ug|” dédzdt
/Rd/ ( |Dus(z, €, 1) += |D§u (z,&,1)] ) dxdg
- i/Rd/UO'G <a|Dwu82 + 7: |D§’u6|2> dxd§ .
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Now again, by our assumption (2.11)) on the initial condition, the right-hand side
is bounded, and finally taking the supremum over ¢, we obtain

0<t<T/Rd/ < |Dyuf(z, €, 1) + |D§u (z,&,1)] >dxd§

+/ / /af|u§|2 dédzdt < C
0 R JU

which, combined with the above and the fact that a > ag > 0, gives our desired
estimate. (]

1
Proof of Lemma[3.4 Writing p¢ = uo® = ((zf)2 O’E> c. (06)%, we get

2
sup (/ / |o°] dacdf) < sup (/ / uf|® o¢ dxd§> (/ o° d§> -0
0<t<T \JA JU 0<t<T \JR4 JU A

This follows because the first term on the right-hand-side is bounded by Lemma
and because the second term on the right-hand-side goes to 0 by (3.2) and

(3.3). Hence (3.9) follows.

Similarly, we deduce

2
sup (/ / | D pf| da:df) < sup </ / |D:,Uu€|206 dxd«f) (/ o€ df) -0
0<t<T AJU 0<t<T \JR¢ JU A

from which (3.13) follows, as well as

/oT </A/U|p§| dmd5>2 dt < /OT (/Rd/DUEF aedwdﬁ) (Aafd&) dt = 0

from which (3.12)) follows.
Now define af = af(x,t) by

af(x,t) = /.ps(:mg,t)df = /v u(z,&,t) o dE .

In the same way as above, but this time using that fv‘ ocdé < fRd o =1, we get

/OT/UO‘?'W = /T (/ /U6|206dxd§> (/ a€d£> dt < C,
/OT/U|O¢§¢| dwdt < / (/ /|uf\ o d;z:dg) (/ - dg) it < C.and
/OT/UDxaﬂ dxdt < /o </v,./U|Dmu€|2aedxd€) (/vaﬁdQ“) dt < C.

Hence for each 4, {a¢} is bounded in H'(U x [0,77]), a reflexive Banach space,
and so by weak compactness, we can extract a subsequence {¢,} -, with €, — 0
as n — oo, such that, for some limit functions o; = «;(z,t), we have ;" — oy
weakly in Hl(U x [0, T}) as n — co. The results (3.8), (3.10)), (3.11)) then follow by
construction.
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Finally, for (3.14)), notice that
o€ 2 z Te 3
/ / |Deuf| dedé < (/ / — |Deu| dmdf) (/ €d§>
v Ju Vi JU Te v 0
3
<o, )
v, 0°

To show that the last integral converges to 0 as € — 0, we have

€ 1 —_a-n — 4 a 2
/ T—dfz —e He}[l—i—og(l)}e 2(27%);#/ e* de
, O € Vi

1 - 1
< —e M40 ] @raf pe T il = Zet L+ o) 2ne)f Vil
where the first identity follows from the definitions of 7., o€, and Z, and (3.3)). Since
1 > 0 the last term converges to 0 as € — 0. Therefore, it follows that, on V; x U,
u® — u; a.e. for some function u; = w;(z,t). But using p¢ = ou€, integrating with
respect to £ on V; and using fv‘ o€ d¢ = ji;, we finally obtain u; = 3; O
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