APMA 1210 - HOMEWORK 3

Reading: Sections $3.1-3.2,3.4-3.5,3.7,4.1-4.3$ of the textbook
Problem 1: (4 points)
Use the linprog feature in MATLAB to find the optimal value and an optimal vertex of the following LP problem

$$
\begin{aligned}
\max z= & 2 x_{1}+3 x_{2}+x_{4} \\
\text { Subject to } & x_{1}+x_{2}+x_{3}+x_{4} \leq 2 \\
& 2 x_{1}+3 x_{3}+4 x_{4} \leq 2 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

As usual, take a screenshot of your code and the outputs. Do any modifications you need to do to z by hand, or include in the code.

From now on, feel free to use MATLAB to solve linear programming problems!

Optional: If you'd like to play around with this a bit, try to solve the LP problems in the previous two homeworks using MATLAB.
(Turn page)

Date: Due: Thursday, October 6, 2022 at 11:59 pm.

Problem 2: (6 points, 2 points each)
(a) Use linear programming to find one vertex of the following LP, so that one could start the simplex method.

$$
\begin{gathered}
\max z=x_{1}+x_{2} \\
\text { subject to } 3 x_{1}-4 x_{2} \leq 3 \\
-x_{1}-4 x_{2} \leq-7 \\
2 x_{1}+6 x_{2} \leq 20 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(Please proceed the way we've done in lecture, despite the fact that -7 is negative)
(b) Draw the feasible region of the original LP. Mark the vertex found in part (a).
(c) Solve the original LP. Draw a path that the simplex algorithm could take from the vertex found in part (a) to a vertex that achieves the optimal solution.

Problem 3: (6 points, 2 points each)
(a) Write out the dual to the LP in the problem 2
(b) Solve the dual LP. What is the optimal value of the dual?
(c) Change one of the constraints in the LP in problem 2 so that the optimal value becomes unbounded. Write out the dual to the new LP. Is that dual feasible?
(Turn page)

Problem 4: (4 points, Problem 3.1 of the book)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function

Suppose f has a local minimum at x, meaning there exists some $\epsilon>0$ such that for all y with $|x-y| \leq \epsilon$ we have $f(x) \leq f(y)$.

Prove that f has a global minimum at x, meaning that for all $y \in \mathbb{R}^{n}$ we have $f(x) \leq f(y)$

Hint: Given $y \in \mathbb{R}^{n}$, first find λ (depending on x and y) small enough such that $z=(1-\lambda) x+\lambda y$ satisfies $|z-x| \leq \epsilon$. Then use the definition of local min, as well as convexity of f.

