LECTURE 3: LINEAR PROGRAMMING

1. Linear Programming

Recap: A mathematical programming (max/min) problem is linear if f and the constraints are linear.

We saw that any linear programming can be put in the following form:

$$
\begin{gathered}
\max z=c^{T} \mathbf{x} \\
\text { subject to } A x \leq b \\
\text { and } \mathbf{x} \geq 0
\end{gathered}
$$

- c is the cost vector (think the price of each product)
- A is the constraint matrix
- b is the constraint vector

2. Standard Form

We can actually do better than that, and put a problem in standard form:

Rule 1: (Sign Rule)

Date: Thursday, September 15, 2022.

If a variable x_{i} has arbitrary sign, then we can write

$$
x_{i}=\left(x_{i}\right)^{+}-\left(x_{i}\right)^{-}, \text {where }\left(x_{i}\right)^{ \pm} \geq 0
$$

For example, if $x_{i}=3$ then $x_{i}=3-0$ so $\left(x_{i}\right)^{+}=3$ and $\left(x_{i}\right)^{-}=0$, but you can also write $x_{i}=4-1$ so $\left(x_{i}\right)^{+}=4$ and $\left(x_{i}\right)^{-}=1$ (so you can decompose x_{i} in multiple ways).

And if $x_{i}=-5$ then $x_{i}=0-5$ so $\left(x_{i}\right)^{+}=0$ and $\left(x_{i}\right)^{-}=5$ for example, but also $\left(x_{i}\right)^{+}=2$ and $\left(x_{i}\right)^{-}=7$ would work.

Moral: It is actually ok to assume without loss of generality that all our variables are ≥ 0.

Rule 2: (Equality)

We can actually turn any inequality $A \mathbf{x} \leq b$ into an equality as follows:
Example 1: Suppose your constraint is given by

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 5 \\
& 2 x_{1}+3 x_{2} \leq 8 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

Define new variables s_{1} and s_{2} called slack variables by

$$
\begin{aligned}
& s_{1}=5-x_{1}-2 x_{2} \geq 0 \\
& s_{2}=8-2 x_{1}-3 x_{2} \geq 0
\end{aligned}
$$

Then by definition of s_{1} and s_{2}, the constraints simply become

$$
\begin{aligned}
x_{1}+2 x_{2}+s_{1} & =5 \\
2 x_{1}+3 x_{2}+s_{2} & =8 \\
x_{1}, x_{2}, s_{1}, s_{2} & \geq 0
\end{aligned}
$$

So by redefining \mathbf{x} and A to be

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
s_{1} \\
s_{2}
\end{array}\right] \quad A=\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 3 & 0 & 1
\end{array}\right]
$$

The constraint now becomes $A \mathbf{x}=\mathbf{b}$

Example 2: (putting it all together)

Write the following problem in standard form:

$$
\begin{aligned}
\max z= & 2 x_{1}+4 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 3 \\
& 3 x_{1}+2 x_{2}=14 \\
& x_{1} \geq 0
\end{aligned}
$$

First of all, x_{2} is of arbitrary sign, so write $x_{2}=\left(x_{2}\right)^{+}-\left(x_{2}\right)^{-}$.
Moreover, let $s_{1}=3-x_{1}-x_{2}$ then the problem becomes

$$
\begin{aligned}
\max z= & 2 x_{1}+4\left(x_{2}\right)^{+}-4\left(x_{2}\right)^{-} \\
\text {subject to } & x_{1}+\left(x_{2}\right)^{+}-\left(x_{2}\right)^{-}+s_{1}=3 \\
& 3 x_{1}+2\left(x_{2}\right)^{+}-2\left(x_{2}\right)^{-}=14 \\
& x_{1},\left(x_{2}\right)^{-},\left(x_{2}\right)^{+}, s_{1} \geq 0
\end{aligned}
$$

Which you can write in matrix form as

$$
\max z=c^{T} \mathbf{x}, \text { subject to } A \mathbf{x}=b \text { and } \mathbf{x} \geq 0
$$

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\left(x_{2}\right)^{+} \\
\left(x_{2}\right)^{-} \\
s_{1}
\end{array}\right], c=\left[\begin{array}{c}
2 \\
4 \\
-4 \\
0
\end{array}\right], A=\left[\begin{array}{llll}
1 & 1 & -1 & 1 \\
3 & 2 & -2 & 0
\end{array}\right], b=\left[\begin{array}{c}
3 \\
14
\end{array}\right]
$$

And if for example $\mathbf{x}=\left[\begin{array}{l}8 \\ 1 \\ 6 \\ 0\end{array}\right]$ is a solution, then $x_{1}=8$ and $x_{2}=$ $\left(x_{2}\right)^{+}-\left(x_{2}\right)^{-}=1-6=-5$ is a solution

And if $\left(x_{1}, x_{2}\right)=(4,-2)$ is a solution to the original problem, then for example $\left(x_{2}\right)^{+}=0,\left(x_{2}\right)^{-}=2$ and $s_{1}=3-x_{1}-x_{2}=1 \geq 0$ and so $\mathbf{x}=\left[\begin{array}{l}4 \\ 0 \\ 2 \\ 1\end{array}\right]$ is a solution to the new problem.
So we can really go back and forth between those two formulations.
3. Solving a linear programming problem

Let's now finally solve a linear programming problem!

Example 3:

Solve the following

$$
\begin{aligned}
\max z= & 3 x_{1}+5 x_{2} \\
\text { subject to } & x_{1} \leq 4 \\
& x_{2} \leq 6 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

STEP 1: Draw the feasible region
$x_{1}=4$ is a vertical line, $x_{2}=6$ is a horizontal line, and the last one is the diagonal line $x_{2}=9-\frac{3}{2} x_{1}$

We then obtain the colored region as in the picture (on the next page)

STEP 2: Motivation

Let's plot some level curves, that is curves of the form $z=k$ (for real numbers k)

For example, with $z=10$, we get the line $3 x_{1}+5 x_{2}=10$, so $x_{2}=$ $-\frac{3}{5} x_{1}+2$. This line crosses the feasible region, so z is for sure at least 10 .

Can we do better? Yes! Let's try some bigger z, say $z=15$. Geometrically, what this does is move the line to the right (the x_{2} intercept increases). It still crosses the feasible region!

And in fact, if you think about it, we can increase z until we reach a corner point/vertex of the feasible region.

So in fact here the max is obtained at $(2,6)$ and the max value is

$$
z=3 x_{1}+5 x_{2}=3(2)+5(6)=36
$$

Answer: $\left(x_{1}, x_{2}\right)=(2,6)$ and $z=36$

Fact:

If the feasible region is bounded and non-empty, then an optimal solution can always be found at a corner point

Note: The optimal solution might not be unique, could be attained at two different corner points for example.

Note: For unbounded regions, either the optimal solution is at a corner point, or z can be arbitrarily small or large (think $\pm \infty$)

Summary: There are four possible scenarios in linear programming

Case 1: Unique solution
Case 2: Two or more solutions

Case 3: No solution. This happens when the feasible region is empty

Case 4: The LP problem has arbitrarily large (or small) solutions. This happens for unbounded feasible regions

4. Linear Programming and Cookies

As a fun application, let's use linear programming to \cdots bake cookies! [T]
Suppose you want to bake the perfect (optimal) cookie with the following nutrition facts:

Goal: Figure out how much to use of each ingredient.

Decision Variables:

[^0]\[

$$
\begin{aligned}
x_{1} & =\text { Number of Servings of Chocolate Chips } \\
x_{2} & =\text { Number of Servings of Flour } \\
x_{3} & =\text { Number of Servings of Butter } \\
& \vdots \\
x_{9} & =\text { Number of Servings of Vanilla }
\end{aligned}
$$
\]

Constraints: To find the constraints, let's look at the nutritional data for the ingredients

| | Grams | Calories | Fat (g) | Sat. Fat (g) | Cholesterol (mg) | Sodium (mg) | Carbs (g) | Sugar (g) | Protein (g) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Cup Choc Chips | 160 | 840 | 48 | 40 | 0 | 0 | 108 | 96 | 10 |
| 1 Cup Flour | 125 | 455 | 0 | 0 | 0 | 0 | 95 | 0 | 13 |
| 1 Stick Butter | 113 | 810 | 91.7 | 58 | 242.9 | 12.4 | 0.1 | 0.1 | 1 |
| 1 Cup Sugar | 200 | 773 | 0 | 0 | 0 | 0 | 200 | 200 | 0 |
| 1 Cup Brown Sugar | 200 | 773 | 0 | 0 | 0 | 0 | 200 | 200 | 0 |
| 1 Egg | 53 | 78 | 5 | 1.6 | 186 | 62 | 0.4 | 0.2 | 6.3 |
| 1 Tsp Baking Soda | 5 | 0 | 0 | 0 | 0 | 1258.6 | 0 | 0 | 0 |
| 1 Tsp Salt | 5 | 0 | 0 | 0 | 0 | 2325 | 0 | 0 | 0 |
| 1 Tsp Vanilla | 4.2 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 Serving Size | 28 | 140 | 7 | 4.5 | 25 | 150 | 18 | 12 | 2 |

Each ingredient has to be in decreasing order in terms of weights, and so we get the constraint

$$
160 x_{1} \geq 125 x_{2} \geq 113 x_{3} \geq \cdots \geq 4.2 x_{9} \geq 0
$$

Moreover, the total weight has to be 28 grams, the total calories has to be 140, which gives

$$
\begin{aligned}
160 x_{1}+125 x_{2}+\cdots+4.2 x_{9} & =28 \\
840 x_{1}+455 x_{2}+\cdots+10 x_{9} & =140 \\
& \vdots \\
10 x_{1}+\cdots+0 x_{9} & =2
\end{aligned}
$$

Objective Function: None actually, we just want one point in the feasible region

But here's the catch: If you solve this problem as it is, you will find that the feasible region is empty, so there would be no solution. To get around this, relax the constraint a little bit. For example, instead of requiring the second constraint to be exactly equal to 28 , just require it to be between 26 and 32 (it'll still be a delicious cookie, I promise)

If you then implement the simplex method (see later) to solve this problem, then you get that the optimal proportions are:

Chocolate Chips	1.563 Cups
Flour	2 Cups
Butter	1.885 Sticks
Sugar	0.756 Cups
Brown Sugar	0.756 Cups
Eggs	1.502 Egg
Baking Soda	1.329 Tsp
Salt	1.328 Tsp
Vanilla	1.582 Tsp

And as a result, you get some wonderfully tasty cookies \odot

5. Appendix: Python Code

Here is the Python Code for the previous problem, in case you're interested

```
import numpy as np
import picos as pic
```

def recipe_lp(label,ingredients,eps=0.1):

```
\(\mathrm{n}=\) len(ingredients[0])
m = len(ingredients)
```

model = pic. Problem()
$\mathrm{x}=$ model.add_variable('x',n)
model.add_list_of_constraints(
[pic.tools.sum([ingredients[i][j]*x[j] for j in range(n)]) <=
(label[i]+max(0.5,eps*label[i])) for i in range(m)]
model.add_list_of_constraints(
[pic.tools.sum([ingredients[i][j]*x[j] for j in range(n)]) >=
(label[i]-max (0.5,eps*label[i])) for i in range(m)]
model.add_list_of_constraints(
[pic.tools.sum([ingredients[0][i]*x[i] >=
ingredients[0] [i+1]*x[i+1] for i in range (n-1)])
model.add_constraint(x >= 0)
model.solve(solver='cvxopt')
return $x . v a l u e$
label $=[28 ., 140 ., 7 ., 4.5,25 ., 150 ., 18 ., 12 ., 2$.
ingredients = [[160., 125., 113., 200., 200., 53., 5., 5., 4.2],
[840., 455., 810., 773., 773., 78., 0., 0., 10.],
[48., 0., 91.7, 0., 0., 5., 0., 0., 0.],
[40., 0., 58., 0., 0., 1.6, 0., 0., 0.],
[0., 0., 242.9, 0., 0., 186., 0., 0., 0.],
[0., 0., 12.4, 0., 0., 62., 1258.6, 2325., 0.], [108., 95., 0.1, 200., 200., 0.4, 0., 0., 0.], [96., 0., 0.1, 200., 200., 0.2, 0., 0., 0.,], [10., 13., 1., 0., 0., 6.3, 0., 0., 0.]]

[^0]: ${ }^{1}$ Thank you Caroline Klivans for the idea

