
LECTURE 7: SIMPLEX ALGORITHM (III)

Today: Why the simplex method works and what can go wrong.

1. Why the simplex method works

How come the simplex method gives us the optimal vertex?

Main Issue: The simplex method walks from vertex to vertex, and
checks if a vertex is better than its neighbors.

Example: In the example from last time, (0, 3) is better than its
neighbor (0, 0), and (1, 4) is better than its neighbors (0, 3) and (3.4, 2.8)
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So the simplex method gives us a local maximum, a vertex than is
better than its neighbors

But does it give you a global maximum, meaning the biggest value
of z in the feasible region?

In general, the answer is NO:

Here the vertex on the left is a local max (better than its neighbors),
but not a global max, it does not give us the biggest value of z.

What saves us is. . . convexity !!
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Definition:

A function f : S → R is convex if for all x, y ∈ S and all
0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Interpretation: f lies below the segment connecting f(x) and f(y)

Typical examples include f(x) = |x| or f(x) = x2 or f(x) = ex. In
calculus, convex is the same as concave up.

What makes the simplex method work is the following
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Fact:

Any local min of a convex function is automatically a global min

You will prove this on the homework, but intuitively it’s because if
you’re at a local min (for example) and f “bends upwards,” this forces
the local minimum to become global.

Luckily for LP problems, our objective function is always convex:

Fact:

z = cTx is convex

(To prove this, just use the definition of convex function)
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This tells you that any local min is a global min, but then use

max z = −min (−z)

And −z = −cTx is convex to get the statement about global max.

2. Starting Vertex

So far in our simplex method, we got lucky because we were always
easily able to find a starting vertex, namely the origin. But what if it’s
not obvious where to start?

Luckily the following trick helps us figure out a starting vertex:

Example:

max z =2x1 − 3x2 + 5x3
subject to x1 − x2 + 3x3 = 5

x2 + 4x3 ≤ 4

x1, x2, x3 ≥ 0

Note: Here m = 2, which is the number of constraints other than
xi ≥ 0

Trick: Introduce m = 2 new ‘artificial’ variables z1, z2, · · · , zm with
and solve the new LP:

min z1 + · · ·+ zm
subject to x1 − x2 + 3x3+z1 = 5

x2 + 4x3+z2 ≤ 4

xi ≥ 0

zi ≥ 0
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Then simply set

x1 =0

x2 =0

x3 =0

z1 =5

z2 =4

Then (0, 0, 0, 5, 4) is a basic feasible solution, that is:

(1) (0, 0, 0, 5, 4) is in the feasible region

(2) m+n = 2+3 = 5 (lin ind) constraints are satisfied with equality
at (0, 0, 0, 5, 4)

So by definition, (0, 0, 0, 5, 4) is a vertex ✓

In other words, our new LP problem has a vertex.

Then two things can happen

Case 1: The optimal solution for the new LP is z = 0.

This means there is a vertex (x1, x2, x3, z1, z2) such that

z = z1 + z2 = 0

But since z1, z2 ≥ 0 this implies z1 = 0 and z2 = 0, so the vertex is
(x1, x2, x3, z1, z2), and so (x1, x2, x3) is a vertex of the original problem
(since it’s basic feasible) and we can use that vertex as our starting
point to solve that original LP problem. ✓
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For example, if you find that vertex is (1, 7, 4, 0, 0) then your starting
vertex is (1, 7, 4)

Case 2: The optimal solution is z > 0. Then z = z1+z2 > 0, so either
z1 > 0 or z2 > 0. But this means that the original problem is infeasible!

Why? Suppose for instance that (6, 1, 0) is in the feasible region of the
original problem, then (6, 1, 0, 0, 0, 0) would be in the feasible region of
the new problem, and in that case at that point, z = z1+z2 = 0+0 = 0,
so there is a point where z = 0 which contradicts the fact that min z
is positive ⇒⇐

To summarize: To find a starting vertex, first write the new LP and
solve it. If you find z = 0, then you get a starting vertex for the original
LP. If you find z > 0, then the original LP is unsolvable and you stop.

3. Degeneracy

Now let’s talk about potential problems that might arise with the sim-
plex method. One problem is not so much an issue of the simplex
method, but more of the computer implementation.

Consider the following scenario, where our constraints intersect at a
single point:
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What could happen is that the algorithm starts with constraints 1O+ 2O
being tight, then releases 1O to make 2O+ 3O tight, then releases 2O to
make 3O + 4O tight . . . then releases 8O to make 1O + 2O tight, which
results in an infinite loop!!

To get around this, one possible solution is to move one constraint just
a little bit, as in this figure
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This would give us an approximate solution, but at least it resolves
the cycling issue

4. Efficiency

How fast is the simplex algorithm? This is a question that has only
been partially resolved until quite recently!

Because since the simplex method walks through a small subset of a
polyhedron, so the question essentially boils down to: What is the
smallest distance between vertices x and y?
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Definition: If x and y are vertices of a polyhedron, then

d(x, y) = Minimum length between x and y

Think of it as the most efficient way of going from x to y

Now given a polyhedron P , we just need to do this over all the vertices

Definition: If P is a bounded polyhedron, then the diameter of P :

D(P ) = max
vertices x,y∈P

d(x, y)
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Think of it as the biggest path in P .

Finally, we just need to maximize this over all the vertices.

Definition:
∆(n,m) = max

P
D(P )

Where the max is taken over all bounded polyhedra P in Rn defined
by m inequalities.
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Hirsch Conjecture:

Do we have ∆(n,m) ≤ m− n ?

Surprisingly the answer is NO! There is a counterexample found only
recently by F. Santos in 2010 where we have

Dimension: n = 43

Constraints: m = 86

But ∆(n,m) > 44
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