
APMA 1210 Recitation 1

Teressa Chambers

September 2022

1 Questions

1.1 Rabbit Food

Your beloved pet rabbit needs a special diet. Your vet says to feed your rabbit
at least 24g of fat, 4g of protein, and 36g of carbohydrates every day. However,
the vet also warns you not to feed your rabbit more than 5oz of food in total
each day.

On your college-student budget, you can reliably afford two brands of rabbit
food: E-Z-Feed and Bargain Bunny. E-Z-Feed costs $0.20/oz, and each ounce
contains 12g of fat, 1g of protein, and 12g of carbohydrates. Bargain Bunny
costs $0.30/oz, and each ounce contains 8g of fat, 2g of protein, and 12g of
carbohydrates. Your goal is to come up with a mixture of these brands that
will minimize the amount you have to spend on food while meeting your pet’s
needs.

(a) Write a linear program representing this problem. Clearly specify your
decision variables.

(b) Reformulate your program in standard and matrix form.

(c) Draw the feasible region for the problem and clearly identify all con-
straints.

(d) Solve the problem.

1.2 Camera Manufacturing

This is problem #9 from Chapter 1 in Applied Mathematical Programming. The
Candid Camera Company manufactures three lines of cameras: the Cub, the
Quickiematic and the VIP, whose contributions are $3, $9, and $25, respectively.
The distribution center requires that at least 250 Cubs, 375 Quickiematics, and
150 VIPs be produced each week.

Each camera requires a certain amount of time in order to: (1) manufacture
the body parts; (2) assemble the parts (lenses are purchased from outside sources
and can be ignored in the production scheduling decision); and (3) inspect, test,

1

Figure 1: Data for Airline Optimization Problem

and package the final product. The Cub takes 0.1 hours to manufacture, 0.2
hours to assemble, and 0.1 hours to inspect, test, and package. The Quickiematic
needs 0.2 hours to manufacture, 0.35 hours to assemble, and 0.2 hours for the
final set of operations. The VIP requires 0.7, 0.1, and 0.3 hours, respectively.
In addition, there are 250 hours per week of manufacturing time available, 350
hours of assembly, and 150 hours total to inspect, test, and package.

Formulate this scheduling problem as a linear program that maximizes con-
tribution.

1.3 Airline Optimization

This is problem #14 from Chapter 1 in Applied Mathematical Programming.
An airline that flies to four different cities (A, B, C, D) from its Boston base
owns 10 large jets (B707), 15 propeller-driven planes (Electra), and two small
jets (DC9). The data in the table above (Figure 1) is available for the flight
paths, assuming consistent flying conditions and passenger use.

(a) Can you choose decision variables that could be used in multiple linear
programs based on this data set? What would a good selection of decision
variables be, with no context on what the goal of the program would be?

(b) Write a constraint or set of constraints to ensure that City D is visited at
least twice each day, and all the other cities are visited at least four times
each day.

2

(c) Each plane can fly at most 18 hours in a single day. Write a constraint or
set of constraints to govern the limitations on the availability of planes.

(d) Several objective functions could be pursued based on this information.
Write objective functions designed to (i) minimize cost over a day, (ii)
maximize profit over a day (note profit is revenue minus cost), and (iii)
minimize fleet flying time over a day.

3

2 Solutions

2.1 Rabbit Food

(a) The decision variables are E and B, representing the quantity (in ounces)
of each brand of food that you should be feeding your rabbit each day.
The objective function will be in terms of food costs per day, and the
constraints will be in terms of nutritional quantities per day.

Minimize: z = 0.2E + 0.3B

Subject to: E +B ≤ 5 (Total food)

12E + 8B ≥ 24 (Fat)

E + 2B ≥ 4 (Protein)

12E + 12B ≥ 36 (Carbs)

E,B ≥ 0

(b) In standard form, we add non-negative slack variables for any less-than
constraint, and we subtract non-negative slack variables for any greater-
than constraint. This turns all constraints into equalities:

Minimize: z = 0.2E + 0.3B

Subject to: E +B + s1 = 5 (Total food)

12E + 8B − s2 = 24 (Fat)

E + 2B − s3 = 4 (Protein)

12E + 12B − s4 = 36 (Carbs)

E,B, s1, s2, s3, s4 ≥ 0

In matrix form, we are maximizing the objective function z = cTx subject
to the constraints Ax = b and x = 0, where c, x,A, b are the following
matrices and vectors:

c =


0.2
0.3
0
0
0
0

 , x =


E
B
s1
s2
s3
s4

 , A =


1 1 1 0 0 0
12 8 0 −1 0 0
1 2 0 0 −1 0
12 12 0 0 0 −1

 , b =


5
24
4
36



(c) The figure on the next page has all 4 constraints labelled, and the feasible
region outlined in black. The horizontal axis is for E-Z-Feed (E) and the
vertical axis is for Bargain Bunny (B).

(d) This problem can be solved by identifying the corner points of the feasible
region, plugging them into the objective function z = 0.2E + 0.3B, and
seeing which one produces the smallest value. The feasible region has

4

Figure 2: Rabbit Food Feasible Region

corners at (0, 3), (0, 5), (5, 0), (4, 0), (2, 1); of these, the point (2, 1) gives the
smallest value in the objective function, yielding z = 0.7, or an expenditure
of $0.70 per day on rabbit food.

2.2 Camera Manufacturing

We are trying to maximize ”contribution,” which here means ”profit” - thus the
objective function will be in terms of the amount each camera model (Cub, C;
Quickiematic, Q; and VIP, V) will be sold for. The decision variables will be
the numbers of each type of camera to make each week. We need a constraint
for each type of camera, ensuring that the minimum required quantity of each
model will be made per week We also need a constraint for each production
step, to guarantee that the time allocated for each step every week does not

5

exceed the time available. Altogether, the program looks like this:

Maximize: z = 3C + 9Q+ 25V

Subject to: C ≥ 250 (Cub minimum)

Q ≥ 375 (Quickiematic minimum)

V ≥ 150 (VIP minimum)

0.1C + 0.2Q+ 0.7V ≤ 250 (Manufacturing time)

0.2C + 0.35Q+ 0.1V ≤ 350 (Assembly time)

0.1C + 0.2Q+ 0.3V ≤ 150 (Final operations time)

Note that we have not included a non-negativity constraint for our decision
variables. This is because the first three constraints already explicitly guarantee
non-negativity, so there is no need to add the extra constraint. We can put this
program in standard form by subtracting a non-negative slack variable from each
of the first three constraints and adding a non-negative slack variable to each
of the last three constraints, as well as specifically including a non-negativity
constraint for these variables:

Maximize: z = 3C + 9Q+ 25V

Subject to: C − s1 = 250 (Cub minimum)

Q− s2 = 375 (Quickiematic minimum)

V − s3 = 150 (VIP minimum)

0.1C + 0.2Q+ 0.7V + s4 = 250 (Manufacturing time)

0.2C + 0.35Q+ 0.1V + s5 = 350 (Assembly time)

0.1C + 0.2Q+ 0.3V + s6 = 150 (Final operations time)

s1, s2, s3, s4, s5, s6 ≥ 0

2.3 Airline Optimization

(a) We have information on how many of each plane is available and what the
cost, revenue, and time is for each type of plane to fly each route. One
immediate idea would be to create decision variables for each type of plane
and each route, representing how many times per day that route is flown
by that type of plane. However, this may not be fine-grained enough. You
can always consolidate variables later if that suits a particular problem
best! So we will make one decision variable for each individual plane
for each route. For example, there are 10 large jets. We create variables
LA1, LA2, ..., LA10 to represent the number of trips taken to city A in a
day by each of these 10 jets. Then we do the same thing for cities B, C,
and D. We carry out this process for the propeller planes and small jets
as well, for a total of 4 · 10 + 4 · 15 + 4 · 2 = 108 decision variables.

(b) For each city, we must add up all the decision variables associated with
that city. So for city D, we would take LD1 + LD2 + ... over all decision

6

variables for city D, and end it by forcing the sum to be greater than or
equal to 2. For the other cities, the same process occurs, and the only
difference is that the sum must be greater than or equal to 4.

(c) Creating this constraint justifies our use of the very large number of de-
cision variables. Each individual plane can only fly 18 hours, so each
individual plane in the fleet now has a constraint based on the amount
of time it takes to fly round-trip to each city. For example large jet #1
now has the constraint LA1 + 2LB1 + 5LC1 + 10LD1 ≤ 18, where the co-
efficients are given by average flying time for the large jets to each city.
This format persists to create the other constraints. This will yield a total
of 10 + 15 + 2 = 27 constraints. Note that we cannot construct these
constraints just by having decision variables for each type of plane or for
the fleet as a whole, as these would allow for a single plane to fly for
over 18 hours if another plane flew for under 18 hours. Moreover, even if
this explicit constraint was omitted, logically no single plane can fly for
more than 24 hours in a day (assuming a standardized timekeeping struc-
ture), meaning that the use of the detailed decision variables is critical
regardless.

(d) These objective functions will all be constructed in the usual way, with
their coefficients taken from the appropriate columns of the table. To
minimize cost, each decision variable is weighted with the cost of its cor-
responding plane type and destination; for example LA1 would have a co-
efficient of $6,000, and so would LA2, LA3, and so on. Maximizing profit
would be achieved by subtracting cost from revenue and using that as the
coefficient, e.g. LA1 would have a coefficient of $5, 000−$6, 000 = −$1, 000
for that objective function. Finally, minimizing overall fleet airtime would
use the flight time for each plane type and destination as the coefficients,
such that LA1 would have a coefficient of 1 whereas LB1 would have a
coefficient of 2.

7

