LECTURE 14: NETWORK PROBLEMS

1. Recap: Network Problem

Last time: Coffee Transportation Problem:

$(20,5)$ means: the max weight is 20 lbs and the cost/toll is $\$ 5$
Decision Variables: $x_{i j}=$ coffee transported on the edge (i, j)

Date: Tuesday, October 25, 2022.

LP Problem:

$$
\begin{aligned}
\min z= & 5 x_{12}+2 x_{13}+1 x_{23}+6 x_{24}+3 x_{34} \\
\text { subject to } & x_{12}+x_{13}=10 \\
& -x_{12}+x_{23}+x_{24}=0 \\
& -x_{23}-x_{13}+x_{34}=0 \\
& -x_{24}-x_{34}=-10 \\
& x_{12} \leq 20 \\
& x_{13} \leq 5 \\
& x_{23} \leq 5 \\
& x_{24} \leq 20 \\
& x_{34} \leq 8 \\
& x_{i j} \geq 0
\end{aligned}
$$

First 4 equations come from conservation of flow (coffee in $=$ coffee out), last 5 equations come from the capacity constraint (max weight)

Important Remark: Can write the conservation of flow as $M x=b$

$$
x=\left[\begin{array}{l}
x_{12} \\
x_{13} \\
x_{23} \\
x_{24} \\
x_{34}
\end{array}\right] \quad M=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 \\
0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & -1
\end{array}\right] \quad b=\left[\begin{array}{c}
10 \\
0 \\
0 \\
-10
\end{array}\right]
$$

Here M is precisely the oriented incidence matrix of the graph

This makes sense because for the conservation of flow, we're basically asking ourselves "Which edges are going in/out of a given vertex?" which is precisely the definition of the oriented incidence matrix.

2. General Min Flow Problem

We can generalize this by using variables

$$
b_{i}
$$

Decision Variables: $x_{i j}=$ amount transported on edge (i, j)
Objective Function: The cost on edge (i, j) is $c_{i j}$ so

$$
z=\sum_{i, j} c_{i j} x_{i j}
$$

Here the sum runs over all edges (i, j)

Conservation of Flow:

In our example, the edges going out of (2) are x_{23} and x_{24}, whereas the edges going in of (2) are x_{12}

More generally, the edges going out of (i) are $x_{i j}$ whereas the edges going out are $x_{k i}$ so the conservation of flow just becomes

$$
\underbrace{\sum_{j} x_{i j}}_{\text {Out }}-\underbrace{\sum_{k} x_{k i}}_{\text {In }}=b_{i}
$$

Capacity Constraint: The max weight is $u_{i j}$ and the min weight is $l_{i j}$ (not depicted)

$$
l_{i j} \leq x_{i j} \leq u_{i j}
$$

LP Problem:

$$
\begin{array}{ll}
\min z= & \sum_{i, j} c_{i j} x_{i j} \\
\text { subject to } \sum_{j} x_{i j}-\sum_{k} x_{k i}=b_{i} & \text { Conservation of flow } \\
l_{i j} \leq x_{i j} \leq u_{i j} & \text { Capacity Constraint }
\end{array}
$$

3. Variation 1: Transportation Problem

Assume only two types of vertices: Sources (departures) and Sinks (arrivals), no intermediate cities

This is an example of a bipartite graph ($\mathrm{bi}=$ two, partite $=$ classes $)$
Assume no max/min weight and also

$$
\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j} \quad(\text { Supply }=\text { Demand })
$$

LP Problem:

$$
\begin{gathered}
\min z=\sum_{i, j} c_{i j} x_{i j} \\
\text { subject to } \sum_{j=1}^{m} x_{i j}=a_{i} \\
\sum_{i=1}^{n}-x_{i j}=-b_{j} \\
x_{i j} \geq 0
\end{gathered}
$$

4. Variation 2: Assignment Problem

As a special case of the above, suppose the left represents people and the right represents jobs, and your task is to assign people to jobs

Assume number of people $=$ number of jobs, so $n=m$

$$
x_{i j}= \begin{cases}1 & \text { if person } i \text { gets assigned to job } j \\ 0 & \text { otherwise }\end{cases}
$$

People
 Jobs

LP Problem:

$$
\min z=\sum_{i, j} c_{i j} x_{i j}
$$

subject to $\sum_{j=1}^{m} x_{i j}=1 \quad$ Every person gets assigned 1 job

$$
\begin{aligned}
& \sum_{i=1}^{m} x_{i j}=1 \quad \text { Every job gets filled } \\
& x_{i j}=0 \text { or } 1
\end{aligned}
$$

Here $c_{i j}$ is the cost of assigning worker i to cost j (think cost of training)
This is an example of an integer programming problem, where we require that $x_{i j}$ be an integer. Those problems are usually much harder to solve than LP problems, but surprisingly here it's not that bad!

Note: This is usually written as a max problem, where $c_{i j}$ is the salary or revenue generated by a worker.

5. Variation 3: Maximal Flow

This time assume only one source and one sink, and ask: What is the biggest supply we can provide at the source?

Think for example a country delivering as much food supply to another one, while not really caring about the cost of production.

Suppose the cost is 1 at each edge and max load is $u_{i j}$ (no min load)

Here for the conservation of flow, we need to distinguish the cases $i=s$ (at the source), $i=t$ (at the sink), and otherwise.

LP Problem:

$$
\begin{aligned}
\max z= & v \\
\text { subject to } & \underbrace{\sum_{j} x_{i j}}_{\text {Out }}-\underbrace{\sum_{k} x_{k i}}_{\text {In }}= \begin{cases}v & \text { if } i=s \\
-v & \text { if } i=t \\
0 & \text { otherwise }\end{cases} \\
& 0 \leq x_{i j} \leq u_{i j}
\end{aligned}
$$

Note: Here the v is defined in terms of the $x_{i j}$ via the conservation of flow, so we are indeed maximizing a function of $x_{i j}$

How annoying is this constraint?!? Luckily there's an insane way of getting around that!

Trick: Introduce another edge $x_{t s}$ which goes directly from t to s (see picture below)

Then v (the max amount transported) is precisely $x_{t s}$, and the demand/supply at every vertex becomes 0 .

New LP Problem:

$$
\begin{aligned}
\max z= & x_{t s} \\
\text { subject to } & \sum_{j} x_{i j}-\sum_{k} x_{k i}=0 \\
& 0 \leq x_{i j} \leq u_{i j} \\
& x_{t s} \geq 0
\end{aligned}
$$

Note: The dual to the max flow problem is called min cut
6. Variation 4: Shortest Path

What if we want to find the shortest path from source to sink?

This is actually just the same problem as usual, except our supply/demand is 1 . In other words, how fast does it take to ship one product from source to sink?

LP Problem:

$$
\begin{aligned}
& \qquad \min z=\sum_{i, j} c_{i j} x_{i j} \\
& \text { subject to } \sum_{j} x_{i j}-\sum_{k} x_{k i}= \begin{cases}1 & \text { if } i=s \\
-1 & \text { if } i=t \\
0 & \text { otherwise }\end{cases} \\
& l_{i j} \leq x_{i j} \leq u_{i j}
\end{aligned}
$$

7. Trees

Let's now focus on special types of graphs called trees

Definition:

A graph is connected if for any two vertices i and j, there is a path going from i to j. Else it is disconnected.

Disconnected

Definition:

A cycle is a (nontrivial) path that starts at a vertex and ends at a same vertex.

Here a cycle is $2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 7 \rightarrow 2$

Definition:

A tree is a connected graph that has no cycles.

Definition:

The degree of a vertex v is the number of edges connected to v

In the picture below, $\operatorname{deg}(v)=4$

Definition:

A leaf of a tree is a vertex of degree 1, else it is a branch

And a collection of trees is a forest (lol)

