
LECTURE 14: NETWORK PROBLEMS (II)

1. Recap: Network Problem

Last time: Coffee Transportation Problem:

(20, 5) means: the max weight is 20 lbs and the cost/toll is $5

Decision Variables: xij = coffee transported on the edge (i, j)

Date: Tuesday, October 25, 2022.
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LP Problem:

min z = 5x12 + 2x13 + 1x23 + 6x24 + 3x34
subject to x12 + x13 = 10

− x12 + x23 + x24 = 0

− x23 − x13 + x34 = 0

− x24 − x34 = −10

x12 ≤ 20

x13 ≤ 5

x23 ≤ 5

x24 ≤ 20

x34 ≤ 8

xij ≥ 0

First 4 equations come from conservation of flow (coffee in = coffee
out), last 5 equations come from the capacity constraint (max weight)

Important Remark: Can write the conservation of flow as Mx = b

x =


x12
x13
x23
x24
x34

 M =


1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1

 b =


10
0
0

−10


Here M is precisely the oriented incidence matrix of the graph



LECTURE 14: NETWORK PROBLEMS (II) 3

This makes sense because for the conservation of flow, we’re basically
asking ourselves “Which edges are going in/out of a given vertex?”
which is precisely the definition of the oriented incidence matrix.

2. General Min Flow Problem

We can generalize this by using variables

Decision Variables: xij = amount transported on edge (i, j)

Objective Function: The cost on edge (i, j) is cij so

z =
∑
i,j

cijxij

Here the sum runs over all edges (i, j)

Conservation of Flow:

In our example, the edges going out of 2O are x23 and x24, whereas the
edges going in of 2O are x12
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More generally, the edges going out of iO are xij whereas the edges
going out are xki so the conservation of flow just becomes∑

j

xij︸ ︷︷ ︸
Out

−
∑
k

xki︸ ︷︷ ︸
In

= bi

Capacity Constraint: The max weight is uij and the min weight is
lij (not depicted)

lij ≤ xij ≤ uij

LP Problem:

min z =
∑
i,j

cijxij

subject to
∑
j

xij −
∑
k

xki = bi Conservation of flow

lij ≤ xij ≤ uij Capacity Constraint
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3. Variation 1: Transportation Problem

Assume only two types of vertices: Sources (departures) and Sinks
(arrivals), no intermediate cities
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This is an example of a bipartite graph (bi = two, partite = classes)

Assume no max/min weight and also

n∑
i=1

ai =
m∑
j=1

bj (Supply = Demand)

LP Problem:

min z =
∑
i,j

cijxij

subject to
m∑
j=1

xij = ai

n∑
i=1

−xij = −bj

xij ≥ 0

4. Variation 2: Assignment Problem

As a special case of the above, suppose the left represents people and
the right represents jobs, and your task is to assign people to jobs

Assume number of people = number of jobs, so n = m

xij =

{
1 if person i gets assigned to job j

0 otherwise
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LP Problem:

min z =
∑
i,j

cijxij

subject to
m∑
j=1

xij = 1 Every person gets assigned 1 job

m∑
i=1

xij = 1 Every job gets filled

xij = 0 or 1
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Here cij is the cost of assigning worker i to cost j (think cost of training)

This is an example of an integer programming problem, where we
require that xij be an integer. Those problems are usually much harder
to solve than LP problems, but surprisingly here it’s not that bad!

Note: This is usually written as a max problem, where cij is the salary
or revenue generated by a worker.

5. Variation 3: Maximal Flow

This time assume only one source and one sink, and ask: What is the
biggest supply we can provide at the source?

Think for example a country delivering as much food supply to another
one, while not really caring about the cost of production.

Suppose the cost is 1 at each edge and max load is uij (no min load)
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Here for the conservation of flow, we need to distinguish the cases i = s
(at the source), i = t (at the sink), and otherwise.

LP Problem:

max z = v

subject to
∑
j

xij︸ ︷︷ ︸
Out

−
∑
k

xki︸ ︷︷ ︸
In

=


v if i = s

−v if i = t

0 otherwise

0 ≤ xij ≤ uij

Note: Here the v is defined in terms of the xij via the conservation of
flow, so we are indeed maximizing a function of xij

How annoying is this constraint?!? Luckily there’s an insane way of
getting around that!

Trick: Introduce another edge xts which goes directly from t to s (see
picture below)

Then v (the max amount transported) is precisely xts, and the de-
mand/supply at every vertex becomes 0.

New LP Problem:

max z = xts

subject to
∑
j

xij −
∑
k

xki = 0

0 ≤ xij ≤ uij
xts ≥ 0
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Note: The dual to the max flow problem is called min cut

6. Variation 4: Shortest Path

What if we want to find the shortest path from source to sink?
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This is actually just the same problem as usual, except our supply/demand
is 1. In other words, how fast does it take to ship one product from
source to sink?

LP Problem:

min z =
∑
i,j

cijxij

subject to
∑
j

xij −
∑
k

xki =


1 if i = s

−1 if i = t

0 otherwise

lij ≤ xij ≤ uij

7. Trees

Let’s now focus on special types of graphs called trees

Definition:

A graph is connected if for any two vertices i and j, there is a
path going from i to j. Else it is disconnected.
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Definition:

A cycle is a (nontrivial) path that starts at a vertex and ends at
a same vertex.

Here a cycle is 2 → 3 → 4 → 5 → 8 → 7 → 2

Definition:

A tree is a connected graph that has no cycles.

Definition:

The degree of a vertex v is the number of edges connected to v
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In the picture below, deg(v) = 4

Definition:

A leaf of a tree is a vertex of degree 1, else it is a branch

And a collection of trees is a forest (lol)
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