
LECTURE 15: NETWORK SIMPLEX ALGORITHM

1. Trees

Definition:

A tree is a connected graph that has no cycles.

Definition:

A leaf of a tree is a vertex of degree 1, else it is a branch

Date: Thursday, October 27, 2022.

1



2 LECTURE 15: NETWORK SIMPLEX ALGORITHM

Fact 1:

Every (finite) tree has a leaf

Why? Suppose not, that is each vertex has degree ≥ 2

Consider a path that starts at a vertex s = s0. Since the graph is con-
nected, s0 has a neighbor s1. Since s1 is not a leaf, it has a neighbor
s2 ̸= s0. Since s2 is not a leaf, it has a neighbor s3 different from s1
and s2 Moreover s3 ̸= s0 otherwise we have a cycle. Continuing this
way we get an infinite path s0 → s1 → s2 → · · · which contradicts



LECTURE 15: NETWORK SIMPLEX ALGORITHM 3

that the tree is finite ⇒⇐ □

The tree above has 7 vertices and 6 edges. This is always true:

Fact 2:

A tree of n vertices has n− 1 edges

(You’ll prove this on the homework)

Fact 3:

For every two vertices i and j of a tree, there is a unique path
going from i to j

Fact 4:

Adding any edge to a tree creates a unique cycle



4 LECTURE 15: NETWORK SIMPLEX ALGORITHM

2. Network Problems and Trees

Ultimate Goal: Find a simplex algorithm for network LP problems

One way is to apply our usual simplex method, but this one is slow
and doesn’t use the special structure of the problem.

Here is where trees come in surprisingly handy!

Note: Assume there are no capacity constraints/max weights here.

Example 1:

Coffee Network, see graph below



LECTURE 15: NETWORK SIMPLEX ALGORITHM 5

Network LP Problem:

min cTx

subject to Ax = b

x ≥ 0

x =


x12
x13
x23
x24
x34

 , c =


5
2
1
6
3

 , A =


1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1

 , b =


10
0
0

−10





6 LECTURE 15: NETWORK SIMPLEX ALGORITHM

c is the cost vector (given by problem)

A is the oriented incidence matrix

b is the supply/demand vector

Notice that the entries of b sum to 0 (supply = demand)

Note: Sometimes people use f (flow) instead of x, so they write
Af = b. Moreover, if b = 0, then the solution to Ax = 0 is called
a circulation, because the flow circulates between all vertices, like
this picture from last time:

Study of A

A =


1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1





LECTURE 15: NETWORK SIMPLEX ALGORITHM 7

Recall:

rank(A) = number of pivots of A

= number of linearly independent rows/columns of A

In this particular example, we have rank(A) = 3

This means there is one row of A we can remove without changing the
rank, here for example the last one:

 1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1



We can play the same game with the columns! Since the rank is 3,
this means we can remove two columns and still get a matrix with
rank = 3. For example, let’s remove columns 1, 2, 5

Ã =

 1 1 0
−1 0 0
0 −1 1



This is a 3× 3 matrix with rank 3, so it’s invertible.

Graphical Interpretation: More interestingly, let’s see what this
looks like on the graph. Here the columns correspond to x12, x13 and
x34



8 LECTURE 15: NETWORK SIMPLEX ALGORITHM

The graph here is in fact a tree between all the vertices, called span-
ning tree (WOW)

Cool Fact:

There is a one-to-one correspondence between

{ Spanning Trees } ↔ { Invertible 3× 3 sub-matrices }

Note: So it’s not really a coincidence that rank(A) = 3 here because
a tree with 4 vertices has 4− 1 = 3 edges!



LECTURE 15: NETWORK SIMPLEX ALGORITHM 9

3. Tree Solutions

In order to start the simplex method, we need a starting vertex. Here
it’s much easier to find.

Example 2:

Find a “tree solution” (vertex) of the following graph



10 LECTURE 15: NETWORK SIMPLEX ALGORITHM

STEP 1: Find a spanning tree in this graph

Here find a tree with 8 vertices. This is not particularly hard to do in
practice: Connect all the vertices and make sure there are no cycles.

STEP 2: Assign value 0 to each edge that you didn’t pick



LECTURE 15: NETWORK SIMPLEX ALGORITHM 11

STEP 3: Let’s focus on the tree part



12 LECTURE 15: NETWORK SIMPLEX ALGORITHM

Start with a leaf, say 1O and find x12 so that the demand constraint is
satisfied. This gives x12 = 2

Now ignore/chop off the edge 1 → 2. Then 2O is a new leaf, so find
x23 so that the constraint is satisfied. This gives x23 = 2.

Now even after ignoring the edge 2 → 3, 3O is still not a leaf, and
you’re stuck! So find a new leaf, for example 4O.

Then repeat this for 4O and complete the graph, starting with a new
leaf whenever you’re stuck.

This gives you the following graph at the end:



LECTURE 15: NETWORK SIMPLEX ALGORITHM 13

This gives a vector x with x12 = 2, x14 = 0 etc. called a tree solution

Definition:

A solution x found with this algorithm is called a tree solution

Note: The technical definition of a tree solution is that you

(1) Find a spanning tree T

(2) Set the non-tree variables to 0

(3) Solve Ãx = b where Ã is the invertible matrix corresponding to
T discussed above, which gives you the remaining variables.

(Here x must be ≥ 0, otherwise we don’t count it as a tree solution)



14 LECTURE 15: NETWORK SIMPLEX ALGORITHM

Fact:

x is a tree solution ⇔ x is a basic feasible solution (= vertex)

4. Network Simplex Algorithm

Main Idea: Start with a tree, add/remove an edge to get a tree with
smaller z−value, until we can’t find a better tree.

Example 3:

Suppose for example we have a graph where one tree solution is



LECTURE 15: NETWORK SIMPLEX ALGORITHM 15

STEP 1: Check for optimality (see later). Assume it’s not optimal

STEP 2: Add an edge, say 3 → 5 with value 0 (assume it’s is part of
the original graph)

We need to remove an edge, otherwise we have a cycle! Which one to
remove?

Suppose you increase the value on 3 → 5 from 0 to 1 (imagine shipping
a new product in an already saturated marked)

Effect of that increase:

(1) All the values on the edges in the same direction as 3 → 5 (green
arrows) get increased by 1

(2) All the values in the opposite direction as 3 → 5 (red arrows)
get decreased by 1



16 LECTURE 15: NETWORK SIMPLEX ALGORITHM

Continue increasing until a red arrow becomes 0, here 4 → 6, and this
is the edge that you remove, to get a new tree


	1. Trees
	2. Network Problems and Trees
	3. Tree Solutions
	4. Network Simplex Algorithm

