LECTURE 4: GEOMETRY OF FEASIBLE REGIONS +
CONVEXITY

1. MOTIVATION

Last time: Solved the following linear programming problem:

max z =3x1 + dxo
subject to 1 < 4
I9 S 6
3r1 + 219 < 18
r1,29 >0

Date: Tuesday, September 20, 2022.
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We saw that the optimal solution is attained at one of the vertices
(corner points) of the feasible region.

Because of this, we will soon devise an algorithm called the simplex
algorithm that will go through the vertices of the feasible region and
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figure out which one is optimal.
Question: Is there an algebraic way to describe the corner points?
Because even though it is obvious to us what those are, it’s not as ob-
vious for a computer. And it’s even less obvious if the feasible region

is three-dimensional (think a soccer ball) or even four-dimensionall

This is why today is mostly a geometry lesson about feasible regions.

2. HYPERPLANES AND POLYHEDRA

Definition: A polyhedron is the set of points of the form
{z e R"| Az < b}

Where A is a m x n matrix and b is a vector in R™.

Notice our feasible region is precisely of this form.

Each individual constraint like 3x1 + 229 < 18, has its own particular
significance. Notice that you can write this one as a’z < b where

a = [3} and b =18
2
Definition: A hyperplane is the set of points of the form
{zreR"|a"z =10}
Where a is a nonzero vector and b is a scalar.

Compare this with ax + by 4+ cz = d from multivariable calculus.
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T

Fact: a is always perpendicular to the hyperplane a* = = b

Why? Fix two vectors z and y in that hyperplane and consider z =
y — z (see picture in lecture) then

a-z=az=ad(y—x)=ad'y—a'r=b-b=0
Hence a is perpendicular to z v/
Now if we have an inequality, then it’s called a half-space:

Definition: A half-space is the set of points of the form

{z eR"|a"z < b}

It is precisely one side of the hyperplane a’x = b

alx>b alx =b

alx < b

Note: Each constraint represents a half-space, and so in the end, the
feasible region is just an intersection of half-spaces.
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Fact: A polyhedron is the intersection of a finite number of half-spaces

(This is because each row of Ax < b is just an equation of the form

ar < b, where a = i'" row of A and b = i'" entry of b)

3. CONVEX SETS

The feasible regions we talk about have a special structure called con-
vexity, which plays an important role in this course (and applied math
in general)

Recall: The line segment between x and y can be represented by

A+ (1= Ny
0<A<1

X

For example, A = 0 corresponds to y, A = 1 corresponds to = and
A= % corresponds to the midpoint between x and y

Convex just means that for every pair of points x and y on the region,
the line segment between x and y is also in the region.



6 LECTURE 4: GEOMETRY OF FEASIBLE REGIONS + CONVEXITY

Definition: A set S is convex if for any z,y € S, and any 0 < A <1
we have Az + (1 - A)y € S

Notin S

Convex

Not Convex

Fact: The intersection of convex sets is convex

(See book, just an application of the definition of convexity)

As mentioned above, our feasible regions will always be convex:

Fact: Every polyhedron is a convex set.

Why? It’s enough to show that half-spaces a’x < b are convex, be-
cause then we can use the fact that a polyhedron is the intersection of
half-spaces and the intersection of convex sets is convex.

Suppose z and y satisfy a’2 < b and a’y < b, then

a’ A4+ (1 =Ny)=da"z+(1=Na"y <M+ (1-Nb=0>
Hence Az + (1 — A)y is in the half-space as well O
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Convex Combinations: It’s useful to generalize the quantity Ax +
(1 — Ay to the case of three or more points:

Definition: A convex combination of vectors xi,zs,...,x; is an
expression of the form

/\13?1 + -+ /\ka:k
Where A\; + -+ + Ay = 1 (and the \; are non-negative)

Note: In the case k£ = 2 we get Ay = 1 — A\; and the above expression
becomes A\jx1 + (1 — A\p)zo

Definition: The convex hull of z;,...,z; is the set of all convex
combinations of those vectors.

It’s actually the smallest convex set containing x1, ...,z
Example: The convex hull of the four points x4, ..., x4 in the figure is

a square. It contains the points, as well as the line segments between
them, but also other convex combinations as well, like ia:l + %563 + }1:&1

x3 @ ® x,

Why this matters? So far, we defined a polyhedron as being the
intersection of half-spaces, but usually you think of polytopes in terms
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of vertices, and in fact a more natural definition is the following

(Alternative) Definition: A polyhedron is the convex hull of finitely
many points

The fact that both definitions are equivalent is not trivial at all, and
the proof will be skipped. Instead, let’s illustrate with an example:

Example: Consider the unit cube in R?. One way is to define it was
the convex hull of (1,0,0), (0,1,0), etc.

Another way to define it is as the intersection of the 6 half-spaces

-1 <0 71 <1
—x9 <0 19 <1
—r3 <0 r3 <1

Both formulations have their advantages and disadvantages. The half-
space definition is more algebraic, while the convex hull definition fo-
cuses on the points, which could or could not be vertices

4. VERTICES

And in fact, we are finally ready to define what a vertex is. We will
give 3 definitions, which turn out to be equivalent.

The first one has to do with extreme points.

Intuitively, if a point is not a vertex, then it must be on a segment
between two points, like in this figure:
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(not in P)
Let P be a polyhedron

Definition: = € P is not an extreme point of P if there are y, 2z € P
with y # x,2 # x and 0 < A <1 such that

r=Ay+(1—-X)z

Definition 1: [Extreme Points]

x € P is an extreme point if x = Ay + (1 — A\)z with y, z, A as above
implies that x =y or x = 2
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An alternative definition of vertices is in terms of a minimization prob-
lem.

Definition 2: [Vertex| z € P is a vertex of P if there is ¢ such that
for all y # € P we have

clo < cly

In other words, ¢’z is the strict minimum of the function above.

Geometric Interpretation: If you let b = ¢z (fixed) then the above
says that any point in P other than x lies in the half-space {cTy > b},

so P lies entirely on one side of the half-plane {cTy = b}, as in the
figure below:

Not vertex:
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Vertex:

cly>b

c’y=b ¢

X

(Think like balancing P on the tip of your finger)

While those definitions are nice from a geometric point of view, they
are difficult to implement with an algorithm. What we need is a purely
algebraic definition, which I'll explain through an example

Example:

max z = Blah
subject to x1 4+ 219 < 5
T — 39 <7
ro+r3 =4
r1+3r3 =1

Notice some constraints come with = and some come with <.
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Also, could happen that some < constraints are satisfied with equal-
ity, like it could happen that at a specific point (x1,x9,x3), we have
x1 + 229 = 5, we call this active/binding at (z1,xs, x3).

Intuitively, a vertex (x1, 2, x3) here just means that

(1) All the constraints with = are satisfied (here the third and
fourth one)

(2) There are a total of 3 (linearly independent) active constraints

(Precise definition next time)
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