LECTURE 9: LP DUALITY (II)

1. RECAP

Primal LP Problem:

$$
\begin{gathered}
\max c^{T} x \\
\text { subject to } A x \leq b \\
x \geq 0
\end{gathered}
$$

Dual LP Problem:

$$
\begin{gathered}
\min b^{T} y \\
\text { subject to } A^{T} y \geq c \\
y \geq 0
\end{gathered}
$$

Weak Duality: "max \leq min"
Strong Duality: "min = max" (if one of them is finite). So if you find that $z=190$ for the dual, then the answer to the primal is $z=190$.

2. Possible Scenarios

The following table summarizes all the possibilities that could happen

Date: Thursday, October 6, 2022.

Dual	Primal	Finite Max	Unbounded
Infeasible			
Finite Min	\checkmark	X	X
Unbounded	X	X	\checkmark
Infeasible	X	\checkmark	\checkmark

Note: \checkmark means "Could happen" whereas X means "Never happens"
The table is read from up to left. For example: "If the Primal has a Finite Max, then it could happen that the Dual has a Finite Min."

Justifications:

- If Primal has a Finite Max, then by Strong Duality, min of Dual $=\max$ of Primal (finite by assumption), so the Dual has a Finite Min, so it is not unbounded (not infinite) and it's not infeasible
- If Primal is unbounded, then max $=\infty$, so by Weak Duality, $\max \leq \min$, so min $\geq \infty$ which is impossible. So the Dual is Infeasible, so no Finite Min, and not Unbounded
- If Primal is infeasible but Dual has a finite min, then the Dual of the Dual has a finite max \Rightarrow Primal has a finite max \Rightarrow Primal is feasible $\Rightarrow \Leftarrow$
- There are cases where the Primal is Infeasible but the Dual is Unbounded or Infeasible

Note: This table is symmetric, which follows because the Dual of the Dual is the Primal.

To Summarize: Only one of three things has happen
(1) Best-Case Scenario: One problem has a finite answer, then the other one has one too
(2) Unbounded Scenario: If one problem is unbounded then the other one is infeasible
(3) Worst-Case Scenario: Both problems are infeasible (degenerate case)

3. Application

Example 1:

Suppose you're a farmer who grows x_{1} wheat at S_{1} dollars/wheat and x_{2} barley at S_{2} dollars/barley

To grow 1 unit of wheat, need to use 1 unit of land, F_{1} units of fertilizer and P_{1} units of pesticide, similarly for Barley (with 1, F_{2} and P_{2})

The total resources available are L land, F fertilizer, and P pesticide.

Decision Variables: x_{1} and x_{2} (wheat and barley)
Objective Function: $z=S_{1} x_{1}+S_{2} x_{2}$
Constraints:

- Land: $1 x_{1}+1 x_{2} \leq L$
- Fertilizer: $F_{1} x_{1}+F_{2} x_{2} \leq F$
- Pesticide: $P_{1} x_{1}+P_{2} x_{2} \leq P$

LP Problem:

$$
\begin{aligned}
\max z= & S_{1} x_{1}+S_{2} x_{2} \\
\text { Subject to } & x_{1}+x_{2} \leq L \\
& F_{1} x_{1}+F_{2} x_{2} \leq F \\
& P_{1} x_{1}+P_{2} x_{2} \leq P \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Dual Problem:

$$
\begin{array}{cl}
\min z=L y_{1}+F y_{2}+P y_{3} \\
\text { Subject to } & y_{1}+F_{1} y_{2}+P_{1} y_{3} \geq S_{1} \\
& y_{1}+F_{2} y_{2}+P_{2} y_{3} \geq S_{2} \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

Interpretation of the Dual Problem:

This is really interesting, and explains why the dual is related to the primal.

Suppose you're a planning board that decides on the prices y_{L}, y_{F}, y_{P} of Land, Fertilizer, and Pesticide.

Decision Variables: y_{L}, y_{F}, y_{P}
Objective Function: The board wants to minimize the total cost, which is $L y_{L}+F y_{F}+P y_{P}$, since we used L land, F fertilizer, and P pesticide.

Constraints: The board sets a price floor (minimum price) of S_{1} dollars/wheat and S_{2} dollars/barley for the farmer

- Per wheat, we need 1 unit of land, F_{1} units of fertilizer, and P_{1} units of pesticide, so the first price floor becomes

$$
y_{L}+F_{1} y_{F}+P_{1} y_{P} \geq S_{1}
$$

- Similarly for the barley we need $y_{L}+F_{2} y_{F}+P_{2} y_{P} \geq S_{3}$

LP Problem:

$$
\begin{gathered}
\min z=L y_{L}+F y_{F}+P y_{P} \\
\text { Subject to } y_{L}+F_{1} y_{F}+P_{1} y_{P} \geq S_{1} \\
\\
y_{L}+F_{2} y_{F}+P_{2} y_{P} \geq S_{2} \\
\\
y_{L}, y_{F}, y_{P} \geq 0
\end{gathered}
$$

Which is PRECISELY the dual problem!!!
So the dual is really looking at the same problem but from a different perspective: While the primal is about a farmer maximizing their profit, the dual is about the planning board minimizing their cost.

Note: Strong Duality kind of says that there is equilibrium, the max of the farmer $=$ min of the planning board, compare this to Demand $=$ Supply in Economics.

4. Complementary Slackness

Recall: We can change a problem $A x \leq b$ into $A x=b$ by using slack variables.

Example: If the constraint is $x_{1}+2 x_{2} \leq 5$, then by defining $s_{1}=$ $5-x_{1}-2 x_{2}$ we get $x_{1}+2 x_{2}+s_{1}=5$.

Problem: How do slack variables relate to duality?
Turns out that there is a really suprising relationship!

Primal with Slack:

$$
\begin{gathered}
\max c^{T} x \\
\text { subject to } A x+s=b \\
x, s \geq 0
\end{gathered}
$$

Dual with Excess:

$$
\begin{gathered}
\min b^{T} y \\
\text { subject to } A^{T} y-e=c \\
y, e \geq 0
\end{gathered}
$$

Here e is called an excess variable. We put $-e$ because we have $A^{T} y \geq c$, so $e=A^{T} y-c$, the inequality goes the other way around.

The miracle is that the variable of one problem (x or y) is perpendicular to the slack variable of the other one (e or s)

Complementary Slackness:

$$
y \cdot s=0 \quad \text { and } \quad x \cdot e=0
$$

Application: This allows us to find some values of y if we know what s is, see example below.

Proof: It all boils down to studying the quantity $y^{T} A x$

On the one hand, since $A x \leq b$ by the primal problem, we have

$$
y^{T} A x \leq y^{T} b
$$

On the other hand, since $A^{T} y \geq c$ by the Dual problem, we get $\left(A^{T} y\right)^{T} \geq c^{T} \Rightarrow y^{T} A \geq c^{T}$ and so

$$
y^{T} A x \geq c^{T} x
$$

$$
\text { Hence } c^{T} x \leq y^{T} A x \leq y^{T} b
$$

By Strong Duality we have $c^{T} x=b^{T} y$ and hence the \leq become $=$. In particular we get $y^{T} A x=y^{T} b$ that is $y^{T}(b-A x)=0$ but since $s=b-A x$ by definition we get $y^{T} s=0$, that is $y \cdot s=0$

Similar for e if you consider $y^{T} A x=c^{T} x$ and subtract.
Let's see this in action via an example

Example 2:

$$
\begin{gathered}
\max 3 x_{1}+5 x_{2} \\
\text { subject to } \\
x_{1} \leq 4 \\
\\
2 x_{2} \leq 12 \\
\\
3 x_{1}+2 x_{2} \leq 18 \\
\\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

This is not particularly hard to solve: We get $x_{1}=2$ and $x_{2}=6$ with optimal value $z=3(2)+5(6)=36$

Here the slack variables are

$$
\begin{aligned}
& s_{1}=4-x_{1}=4-2=2 \\
& s_{2}=12-2 x_{2}=12-2(6)=0 \\
& s_{3}=18-3 x_{1}-2 x_{2}=18-3(2)-2(6)=0
\end{aligned}
$$

So $s=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$
Complementary slackness then says that if $y=\left(y_{1}, y_{2}, y_{3}\right)$ is the solution to the dual problem, we have

$$
s \cdot y=0 \Rightarrow(2,0,0) \cdot\left(y_{1}, y_{2}, y_{3}\right)=0 \Rightarrow 2 y_{1}+0 y_{2}+0 y_{3}=0 \Rightarrow y_{1}=0
$$

So without even writing the dual problem, we already know that $y_{1}=0$.

Remark: Notice here that y_{1} corresponds to the entry where $s_{1}>0$, and in fact this is always true!

Fact:

$$
\begin{aligned}
s_{i}>0 \Rightarrow y_{i}=0 \\
e_{j}>0 \Rightarrow x_{j}=0
\end{aligned}
$$

This is what is really meant by complementary slackness! So if $s=$ $(1,0,3,4,5)$ then we know that $y=(0, \star, 0,0,0)$, the zeros to s and y are complementary.

And in fact we can take this further and solve for the dual problem:

Dual Problem:

$$
\begin{gathered}
\min 4 y_{1}+12 y_{2}+18 y_{3} \\
\text { subject to } y_{1}+3 y_{3} \geq 3 \\
2 y_{2}+2 y_{3} \geq 5 \\
\\
y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

Which now, given $y_{1}=0$ simplifies to

$$
\min 12 y_{2}+18 y_{3}
$$

subject to $3 y_{3} \geq 3$

$$
\begin{aligned}
& 2 y_{2}+2 y_{3} \geq 5 \\
& y_{2}, y_{3} \geq 0
\end{aligned}
$$

Which is much simpler, and in fact the minimum values here are $3 y_{3}=3 \Rightarrow y_{3}=1$ and $2 y_{2}=5-2 y_{3}=3 \Rightarrow y_{2}=\frac{3}{2}$

This gives $y=\left(0, \frac{3}{2}, 1\right)$ and optimal value $z=4(0)+12\left(\frac{3}{2}\right)+18(1)=$ $18+18=36$, as expected.

Note: Again, from complementary slackness, we know that since $y_{2}>0$ and $y_{3}>0, s$ must be of the form $(\star, 0,0)$, which true here

Note: We don't even need to calculate e ! Since $x=(2,6)$ with $2>0$ and $6>0$, this already tells us that $e=(0,0)$. In fact, notice when we minimized this problem, we set $3 y_{3}=3$ and $2 y_{2}+2 y_{3}=5$, so we made all the constraints tight.

