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1 Questions

1.1 Convexity

In class you were asked to take for granted that the objective function z = cTx
of a linear program will always be convex. Prove this fact, using the definition
of convex functions.

1.2 Simplex and Graphs

Consider the following linear program:

Maximize z = x1 + 2x2

Subject to − x1 + x2 ≤ 2

x1 + x2 ≤ 8

− x1 + x2 ≥ −4

x1, x2 ≥ 0

(a) Solve this problem graphically (draw the feasible region and compute the
optimal solution).

(b) If you were to solve this problem using the simplex method, you would
start at the origin and step from vertex to vertex until the optimal value
was found. On your graphical representation, draw the path you think
the simplex method would take. Explain your reasoning.

(c) Compute the first step of the simplex method on this linear program. Is
it following the path you believed it would take?
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1.3 Starting vertices

Search for a starting vertex for the following LP, and use your findings to de-
termine whether the LP is bounded:

Maximize z = 3x1 − 5x2

Subject to 2x1 − x2 ≥ 3

x1 + 3x2 ≤ 5

x1, x2 ≥ 0
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2 Answers

2.1 Convexity

Note that this property is not supposed to depend on how many variables the
program has, so you need a proof that works for any number of variables, as
well as any coefficient vector c. Fortunately, since the objective function z is
also linear, this is relatively easy to show. Suppose there are n ≥ 1 variables,
so both the variables and the coefficients are vectors of length n. Consider any
value of λ ∈ [0, 1], and take any pair of variable vectors x, y ∈ Rn. Then for the
vector λx + (1 − λ)y, evaluating the objective function at this point will yield
z = cT (λx+ (1− λ)y) which gives us the following:

cT (λx+ (1− λ)y) =

n∑
i=1

ci(λxi + (1− λ)yi)

=

n∑
i=1

λcixi + (1− λ)ciyi

= λ

n∑
i=1

cixi + (1− λ)

n∑
i=1

ciyi

= λcTx+ (1− λ)cT y

Recall that the definition of convex functions requires that f(λx + (1 − λ)y ≤
λf(x) + (1 − λ)f(y). As shown above, the objective function of any linear
program will yield equality in this equation, which makes it convex.

2.2 Simplex and Graphs

(a) The graphical representation of the feasible region is on the next page.
Evaluating the objective function at each of the 5 corners of the feasible
region, we find that the optimal value is z = 13 at the corner (3, 5).

(b) The arrows on the figure represent the path that the simplex method
should take, starting from the origin. Notice that the two possible op-
tions starting from the origin yield the same possible increase for z (both
vertices correspond to z = 4); we choose to go to vertex (0, 2) because it
achieves this increase over a shorter edge length. In essence, to make this
prediction, we take the value of z at each possible vertex and divide it
by the length of the edge connecting it to our starting point. Whichever
choice gives the highest ratio of increase in z per unit of distance traveled
is the vertex the simplex method will select, as this is the graph principle
that corresponds to choosing the vertex with the highest coefficient in the
simplex method.

(c) We begin at the origin. Let the first three constraints be numbered (1)-(3)
in the order written, and the non-negativity constraints be x1 ≥ 0 as (4)
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Figure 1: Feasible region and simplex path for problem #2

and x2 ≥ 0 as (5)

Current vertex: (x1, x2) = (0, 0) with tight constraints {(4),(5)}

Objective value: z = 0 + 2(0) = 0, not optimal; select x2 to increase

Move: As x2 increases, constraint (5) releases. Constraint (1) tightens
at x2 = 2.

Coordinates: Using constraint (1), we find y1 = 2 + x1 − x2. Our other
tight constraint is (4), yielding y2 = x1.

Rewrite LP: Reorienting our coordinate system, we have x1 = y2 and
x2 = 2− y1 + y2. This yields the following LP:

Maximize: z = 4− 2y1 + 3y2

Subject to: (1)y1 ≥ 0

(2)− y1 + 2y2 ≤ 6

(3)y1 ≤ 6

(4)y2 ≥ 0

(5)− y1 + y2 ≥ −2
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Notice in particular that at the ”Move” step, we increased x2 to a value
of 2 and did not change the value of x1. This means our first move is to
the vertex (0,2) as predicted graphically.

2.3 Starting vertices

Following the method outlined in the notes, we define a new LP. Since there are
two constraints other than the non-negative constraints, we need two artificial
variables z1, z2. We define the objective function to be z1+ z2, and we will seek
to minimize this function. We create the constraints for this LP by adding z1
and z2 to the left-hand side of each constraint in the original LP, and adding
non-negativity constraints for z1 and z2. The resulting LP is as follows:

Minimize z1 + z2

Subject to 2x1 − x2 + z1 ≥ 3

x1 + 3x2 + z2 ≤ 5

x1, x2, z1, z2 ≥ 0

For this problem, we can start at the point x1 = 0, x2 = 0, z1 = 3, z2 = 5 which
must be a corner of the feasible region. This puts the value of the objective
function at 8 and makes the first two constraints tight, as well as the non-
negativity constraints for x1 and x2. In the interest of brevity, we will omit the
simplex method steps here; you can solve this however you see fit, including
using MATLAB. Solving this LP yields an optimal (i.e. minimum) value of 0,
which means that the original LP is in fact bounded and therefore has a solution.
Moreover, the optimal point is found to be x1 = 1.5, x2 = 0, z1 = 0, z2 = 0 which
means that the simplex method can be started at the point x1 = 1.5, x2 = 0.
To do this in practice, you’ll want to begin the simplex method by execute a
coordinate change to make this starting point look like the ”origin” of your
coordinate system.
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