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1 Questions

1.1 Sensitivity Analysis

Consider a generic LP in matrix form:

Maximize: z = cTx

Subject to: Ax ≤ b

x ≥ 0

Suppose that this LP has a unique optimal value. Prove that its shadow
prices are exactly the optimal vertex of its dual.

(Hint: consider a vector ∆ that makes a very small change to the constraints
of the primal LP, so that the constraints have the form Ax ≤ b+∆. How does
making this change affect the dual?)

1.2 Game Theory

Two companies, Alphabest Inc. and Bookster Ltd., are competing in the market
of children’s learning-to-read materials. Alphabest has opted to use customer-
centric strategies to improve its market share: it gives out discount coupons
(A1), offers home delivery services (A2), and includes free gifts with purchases
(A3). Bookster prefers standard media advertising: its approaches are targeted
internet ads (B1), newspaper inserts (B2), and magazine spreads (B3). The
gains matrix is shown below:

B1 B2 B3
A1 3 -4 2
A2 1 -7 -3
A3 -2 4 7

Write out the LPs for both companies to find their optimal strategies, where
Alphabest has the goal of maximizing gains and Bookster has the goal of mini-
mizing losses. Put Alphabest’s LP in a form that could be rapidly plugged into
MATLAB. Identify the matrices and vectors that show that the problems are
dual.
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1.3 Intro to Networks

A gas company owns a pipeline network, sections of which are used to pump
natural gas from its main field (S) to its distribution center (T ). The company
has two large pumping stations, A and B, by which the gas can reach the
distribution center. At the present time, the company nets 1200 mcf (million
cubic feet) of gas per month from its main field and must transport that entire
amount to the distribution center. The following are the maximum usage rates
and costs associated with each path the gas can take:

S → A S → B A → B A → T B → A B → T
Max use (mcf/month) 500 900 700 400 600 1000
Cost (dollars/mcf) 20 25 10 15 20 40

Draw this network. Include edge directions, label vertices with their sup-
ply/demand values, and label all edges with their capacities and costs. Con-
struct the oriented incidence matrixM for this network. Write the LP associated
with this problem, specifying what your decision variables mean and what units
they have. Put your LP in matrix form and verify that M appears.
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2 Solutions

2.1 Sensitivity Analysis

Let’s call the optimal value of the original LP z0. Note that it is the solution
both of the original primal LP and its dual, which has the following generic
form:

Minimize: z = bT y

Subject to: AT y ≥ c

y ≥ 0

Consider some small change to the vector b of constraint values. We express
this change as a vector ∆, so that we are now considering the following modified
primal LP:

Maximize: z = cTx

Subject to: Ax ≤ b+∆

x ≥ 0

Since z0 was the unique optimal value of the original LP, this LP will also have
a unique optimal value (because we haven’t changed the slopes of the objective
function or any of the constraints). We denote this value as z∆, and observe
that it is also the unique optimal value of the modified dual LP:

Minimize: z = (b+∆)T y

Subject to: AT y ≥ c

y ≥ 0

Note that the constraints of the dual LP have not changed; the only change
is in the coefficients of the objective function. Therefore, with a sufficiently
small change ∆, the optimal vertex of this modified dual LP will be the same
as the optimal vertex of the original dual LP. We designate this vertex as y∗.
Then we have z0 = bT y∗ and z∆ = (b + ∆)T y∗, and in particular we have
that the change in the optimal value due to the change ∆ to the constraints is
z∆ − z0 = (b+∆)T y∗ − bT y∗ = bT y∗ +∆T y∗ − bT y∗ = ∆T y∗.

Now we can get specific. Recall that the shadow price of a constraint i is
defined as the change to the optimal value caused by increasing bi by 1. This
would correspond to a ∆ vector where the i-th entry is 1 and all other entries are
0. For this vector, where we let n be the number of constraints (i.e. the length
of b), the change to the optimal value will be z∆ − z0 = ∆T y∗ =

∑n
j=1 ∆jy

∗
j ,

which evaluates as 1 ·y∗i +
∑

j ̸=i 0 ·y∗j = y∗i . So increasing bi by 1 yields a change
of exactly y∗i in the optimal value, meaning that the i-th entry of the optimal
vertex for the dual is the shadow price for the i-th constraint of the primal, and
this will hold true for all constraints.
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2.2 Game Theory

We will find the LP for Alphabest first. Let Alphabest’s strategy be repre-
sented by x = (x1, x2, x3) where x1 + x2 + x3 = 1 and xi ≥ 0. Then the
objective for Bookster is to minimize losses, represented by z = min{3x1+x2−
2x3,−4x1− 7x2+4x3, 2x1− 3x2+7x3}. Note that z can end up being negative
here; a negative value for z would indicate that Bookster is experiencing gains
and Alphabest is experiencing losses. We can take this minimization function
for Bookster and turn it into the constraints for Alphabest’s LP, which is the
following:

Maximize: z

Subject to: − 3x1 − x2 + 2x3 + z ≤ 0

4x1 + 7x2 − 4x3 + z ≤ 0

− 2x1 + 3x2 − 7x3 + z ≤ 0

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

We use the same process to construct the LP for Bookster - determine the
objective for Alphabest and turn it into constraints. Let Bookster’s strategy
be represented by y = (y1, y2, y3) where y1 + y2 + y3 = 1 and yi ≥ 0. To
maximize gains, Alphabest has the objective z = max{3y1 − 4y2 + 2y3, y1 −
7y2− 3y3,−2y1+4y2+7y3. These three expressions become the constraints for
Bookster’s LP:

Minimize: z

Subject to: − 3y1 + 4y2 − 2y3 + z ≥ 0

− y1 + 7y2 + 3y3 + z ≥ 0

2y1 − 4y2 − 7y3 + z ≥ 0

y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0

It is easiest to identify the duality from here. In Alphabest’s LP, note that
we are working with 4 variables, not 3; we consider z to be its own variable, and
it will correspond to the fourth row/column of A and the fourth entry for b, c.
These are the following:

A =


−3 −1 2 1
4 7 −4 1
−2 3 −7 1
1 1 1 0

 , b =


0
0
0
1

 , c =


0
0
0
1


Note that b and c are the same, so swapping them for the dual problem will
yield the same coefficients in the objective function and constants in the con-
straints; this lines up perfectly with Bookster’s equations. Meanwhile, AT gives

4



the coefficients in the constraints. For the first three constraints, the direction
is swapped; for the last one, since it is an equality constraint in the primal
problem, the corresponding constraint in the dual must also be an equality con-
straint. This also aligns with the LP for Bookster, showing that the problems
are dual.

We now move to putting Alphabest’s LP in a MATLAB-ready form. This
requires us to rewrite the objective function, split the equality constraint into
two inequalities, and flip the direction on the non-negativity constraints. Alto-
gether, this results in the following system of equations (written according to
the form shown in class):

Maximize: 0x1 + 0x2 + 0x3 − z = 0

Subject to: − 3x1 − x2 + 2x3 + z ≤ 0

4x1 + 7x2 − 4x3 + z ≤ 0

− 2x1 + 3x2 − 7x3 + z ≤ 0

x1 + x2 + x3 ≤ 1

− x1 − x2 − x3 ≤ −1

− x1 ≤ 0

− x2 ≤ 0

− x3 ≤ 0

The matrices and vectors you would need to use in your MATLAB input are:

f =
(
0 0 0 −1

)
, A =



−3 −1 2 1
4 7 −4 1
−2 3 −7 1
1 1 1 0
−1 −1 −1 0
−1 0 0 0
0 −1 0 0
0 0 −1 0


, b =



0
0
0
1
−1
0
0
0


2.3 Intro to Networks

A(0)

S(1200) T (−1200)

B(0)

(400,15)

(700,10)

(500,20)

(900,25) (1000,40)

(600,20)

The above network includes all labels and edge directions for the problem,
including the identification of the field node S, distribution center T , and pump-
ing stations A and B. The oriented incidence matrix for this network is shown
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below, first as a table so that the rows and columns can be labelled with their
corresponding vertices, then as the matrix alone. Make sure to be very precise
with your labeling system when constructing these matrices so you know which
information goes with which vertices and edges.

S → A S → B A → B A → T B → A B → T
S 1 1 0 0 0 0
A -1 0 1 1 -1 0
B 0 -1 -1 0 1 1
T 0 0 0 -1 0 -1

M =


1 1 0 0 0 0
−1 0 1 1 −1 0
0 −1 −1 0 1 1
0 0 0 −1 0 −1


The decision variables for this problem will be xSA, xSB , xAB , xAT , xBA, xBT ,

where xij represents the quantity of gas to be sent along the pipeline from node
i to node j in mcf/month. Note that we only have decision variables for individ-
ual directed edges in the network; if there is not a directed edge from node i to
node j, then there is not a decision variable xij (so for example there is no xAS).
Then we can use the network to construct the following LP for minimizing the
cost of transporting gas from the field S to the distribution center T :

Minimize: z = 20xSA + 25xSB + 10xAB + 20xBA + 15xAT + 40xBT

Subject to: xSA + xSB = 1200

− xSA + xAB − xBA + xAT = 0

− xSB − xAB + xBA + xBT = 0

− xAT − xBT = −1200

xSA ≤ 500

xSB ≤ 900

xAB ≤ 700

xBA ≤ 600

xAT ≤ 400

xBT ≤ 1000

xSA, xSB , xAB , xAT , xBA, xBT ≥ 0

Consider the constraint coefficient matrix A for this LP. Since we have a lot of
single-variable constraints, it ends up being very large. To construct it, we need
to make sure we use a consistent ordering of the decision variables. Let’s use
xSA, xSB , xAB , xAT , xBA, xBT like in the objective function. Notice that this
matches the edge ordering we created for the oriented incidence matrix. With
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this ordering, the constraint coefficient matrix appears as follows:

A =



1 1 0 0 0 0
−1 0 1 1 −1 0
0 −1 −1 0 1 1
0 0 0 −1 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


We can see that the first 4 rows of this matrix are precisely the oriented incidence
matrix, because each row corresponds to a specific vertex. Our LP lists these in
the same order as we used for the oriented incidence matrix, to make this clear,
but a reordering of the constraints would not alter the fundamental alignment
between the two matrices.
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