LECTURE 16: MAX FLOX/MIN CUT

1. NETWORK SIMPLEX ALGORITHM (CONTINUED)

Recall: How to implement the simplex algorithm on network problems

Suppose we have a graph where one tree solution is

Add an edge, say 3 — 5 with value 0 (assume part of the original graph)

Date: Tuesday, November 1, 2022.

2 LECTURE 16: MAX FLOX/MIN CUT

2

3 6

0 <) /’
1

Increase the value on 3 — 5 until one edge becomes 0, here 4 — 6

That is the edge we want to remove.

LECTURE 16: MAX FLOX/MIN CUT 3

Note: We increased the value of 3 — 5 by x* where

¥ = min x;;

1, 7 ranges over the edges ¢ — j in the opposite direction of 3 — 5
In this case xg; = 7,246 = 1,231 = 4 and so x* = min {7,1,4} =1
Change in z

We added z* to each edge in the same direction as 3 — 5 (green)
and removed z* from each edge in the opposite direction (red), so the
overall change in z is

x*x(Cost on edges in the same direction as 3 — 5 — Cost in opposite direction)

The number in parentheses is called the reduced cost:

C35 = E Cij — E Cij

1j same 1j opposite
In this case we have
C35 = (35 + ¢57 + ca2 + co1) — (co7 + ca6 + €31)

o If ¢35 < 0, then 3 — 5 is a better edge and you continue with
this new tree.

e If ¢35 > 0, then it’s not a better tree and you continue with a
different edge.

4 LECTURE 16: MAX FLOX/MIN CUT

Optimality Test:

If ¢;; > 0 for all edges not in the tree, then we have an optimal
tree and we stop.

Note: This is also what you check at the very beginning when check-
ing for optimality

Important Note about Cycles: Suppose you add the edge 5 — 6.
Then you get a mini-cycle 5 — 6 — 7 in the tree. In this case you only
focus on that cycle. This means you calculate the reduced cost of that
cycle, which is cs6 + cg7 — c57, and you increase the weight of 5 — 6
until an opposite edge in the cycle 5 — 6 — 7 becomes 0, so in this case
r* =3 and 5 — 7 would get removed. You ignore the other edges here.

2. MAxX FLow

Let’s now revisit and solve max flows

LECTURE 16: MAX FLOX/MIN CUT 5

Consider the following network

Here the cost is 1 and the number on each edge is the max capacity

Goal: Maximize the supply at s

That is, carry as many products from s to ¢, while satisfying the ca-
pacity constraints.

10 20

6 LECTURE 16: MAX FLOX/MIN CUT

STEP 1: Initial Tree

Start with any path from s to ¢ and put weight 1 on each edge:

(doesn’t have to go through all the vertices)

Note: Can do better, can assign the weight on each edge to be
min {20, 30,20} = 20, the smallest possible weight on the path.

LECTURE 16: MAX FLOX/MIN CUT 7

Initial Tree:

20

STEP 2: Residual Graph

Think of this as a shadow /helper graph, one that will help us complete
the picture

Rule 1: Reverse all the (non-zero) arrows on the path

8 LECTURE 16: MAX FLOX/MIN CUT

20 N

20

Rule 2: For the arrows that are not maxed out, add an arrow in the
same direction but with the remainder as weight.

2 — 3 is not maxed out since the capacity on that edge is 30 but we
only used 20 so we add an arrow 2 — 3 with weight 30 — 20 = 10

We also add arrows s — 3 and 2 — ¢ with weights 10 — 0 = 10 since
we used 0 but the max weight is 10

10 LECTURE 16: MAX FLOX/MIN CUT

STEP 3: Do STEP 1 but with the residual graph (find a path and

assign minimal weight)

Here a path is s =+ 3 — 2 — t and you assign weight 10

10

LECTURE 16: MAX FLOX/MIN CUT 11
STEP 4: Augmenting the graph

Add the graph in STEP 3 (red) to your graph from STEP 1 (blue)

10

2010

Note: Here you have to think of 3 — 2 as 2 — 3 but with weight —10,
so the total weight is 20 + (—10) = 10.

Note: If you had two edges s — 2 in the same direction but with
values 2 and 3, this would become one edge s — 2 with value 24+3 =5

12 LECTURE 16: MAX FLOX/MIN CUT

Hence our updated graph looks like:

LECTURE 16: MAX FLOX/MIN CUT 13

STEPS 54 Rinse-and-Repeat

Find the residual graph of this, find a path, and add it to your graph

10

10

20

We’re stuck, there is no path from s to ¢, at which point we STOP

14 LECTURE 16: MAX FLOX/MIN CUT

Optimal Solution:

Max Flow: (largest amount we can produce at s) 20 4+ 10 = 30

3. MiN Cut
The dual way of thinking about the previous problem!

Back to original problem:

LECTURE 16: MAX FLOX/MIN CUT 15

30

10 1%0

A cut is any curve through the graph that separates s and ¢

Think of it as a barrier or a wall.

16 LECTURE 16: MAX FLOX/MIN CUT

Cut
20 10

The largest amount we can get across the cut above is 10430410 = 50
What does that have to do with max flow? Any path from s to t has
to go through a cut, so the max flow (max amount that we can ship)

has to be at most 50

Can we get a tighter bound? Yes! Consider the following cut:

LECTURE 16: MAX FLOX/MIN CUT 17

Cut
20 10

30

10 Ao

The largest amount we can get across that cut is 20 + 10 = 30

So really what we want to do is to minimize this, we want to minimize
the largest amount we can get across all possible cuts

18 LECTURE 16: MAX FLOX/MIN CUT

mcip largest amount across C'

(where C' ranges over all cuts)

Max Flow/Min Cut Theorem:

Max Flow = Min Cut

In the example above, can check that the min of all the cuts is indeed
30 which is also the value of the max flow that we found.

The only issue is that this procedure doesn’t tell us what the optimal
graph looks like, just how much to produce at s

Note: The min cut problem is indeed dual to max flow, if you remem-
ber the motivation in the Dual LP lecture, where we concluded that,
playing around with the constraints, we have z < 200, and playing
around some more, we got z < 190 and we concluded that we had to
minimize this number 190

Note: A cut can be any curve through the graph that separates s and
t, like the blue curve in the example below:

LECTURE 16: MAX FLOX/MIN CUT 19

A J

—_

This separates the graph into two regions, one that contains s and one
that contains ¢.

Moreover, when calculating the value of the cut, you only consider
edges going out of the s—region. So for instance here you don’t count
the edge 2 — 3, and the value of that cut hereis2+1+4+1+ 2 =6.

	1. Network Simplex Algorithm (continued)
	2. Max Flow
	3. Min Cut

