
LECTURE 17: DYNAMIC PROGRAMMING

Today: A cool way of solving a large class of programming problems

1. Cheapest Flight Problem

Example 1:

Consider the following network

Date: Thursday, November 3, 2022.

1



2 LECTURE 17: DYNAMIC PROGRAMMING

(It looks confusing at first but just think of )

Here the vertices are cities and edges are the cost of each flight.

Goal: Find the cheapest flight from s (Seattle) to t (Tampa)

Greedy Algorithm: Just pick the cheapest flight at each step!

This gives you the path s → A → E → H → t (in red) with total cost

2 + 4 + 3 + 4 = 13

However this is not optimal!



LECTURE 17: DYNAMIC PROGRAMMING 3

Better solution: If you take the path s → C → E → H → t (green)
then the total cost is

3 + 1 + 3 + 4 = 11

The reason the greedy algorithm doesn’t work is because, while flying
from s to A might be cheap, you’re missing out on the much cheaper
option at C.

2. Dynamic Programming

The idea of dynamic programming is to deal with this problem recur-
sively, by solving smaller sub-problems of the same nature.

Note: You already saw an example of recursion, where you cut a leaf
from a tree and got a smaller tree

Analogy: Suppose you have a friend f who works perfectly and can
book you the best flight up to a certain city.

Definition:

f(x) = Best flight (total cost) from s to x

f(s) =0

f(a) = best flight from s to a = 2

f(t) = best flight from s to t = our Goal

Now let’s think about this backwards:

In order to find f(t), the best ticket from s to t:



4 LECTURE 17: DYNAMIC PROGRAMMING

• Either your friend books you a ticket to G (this is f(G)) and
you pay 3 for G → t

• Or your friend books you a ticket to H (this is f(H)) and you
pay 4 for H → t

This gives two tickets and you choose the cheapest one. In other words:

f(t) = min {f(G) + 3, f(H) + 4}

Notice how recursive this is, you write f in terms of f .

But now we can continue! How do we find f(G)? We fly optimally
to either D,E, F and pick the cheapest option to fly from there to G,
that is



LECTURE 17: DYNAMIC PROGRAMMING 5

f(G) = min {f(D) + 1, f(E) + 3, f(F ) + 3}

And so we have a bunch of equations for f ,

f(t) =min {f(G) + 3, f(H) + 4}
f(G) =min {f(D) + 1, f(E) + 6, f(F ) + 3}
f(H) =min {f(D) + 4, f(E) + 3, f(F ) + 3}
f(D) = · · ·

...

f(s) =0

Although this works, this very quickly gets out of hands, especially
for graphs with millions of nodes! This is why it’s useful to have an
ordering on the vertices.

3. Ordering on Vertices

Notice that in the graph above, G “comes after” D. This is because,
in terms of our tasks, we need f(D) to calculate f(G) but we don’t
need f(G) to calculate f(D).

Definition:

We say j > i if f(j) requires us to calculate f(i)

So in this scenario, we have G > D,G > E,G > F and but also things
like G > A.

Notice that not all vertices can be compares, for example we can’t
compare G and H



6 LECTURE 17: DYNAMIC PROGRAMMING

This is called a partial order on the vertices1

Note: This allows us to define an orientation of the graph, where we
say i → j if j > i. In this example it coincides with our usual orienta-
tion, but it doesn’t have to.

What’s nice about this is that this new oriented graph doesn’t have
any cycles2, sometimes called a directed acyclic graph (DAG)

More importantly, this allows us to sub-divide the graph into stages,
where the last stage (stage 4) is t, the stage before (stage 3) is all the
vertices smaller than t (so here G and H), the stage before (stage 2) is
all the vertices smaller than G and H (so D,E, F ) etc. and the very
first stage (stage 0) is s.

1Partial ordering means i�> i, and i > j ⇒ j�> i and finally k > j and j > i implies k > i
2follows from the third property: If i1 > i2 > · · · > in > i1 (cycle) then we’d have i1 > i1



LECTURE 17: DYNAMIC PROGRAMMING 7

4. Implementation

With this ordering at hand, let’s see how to implement dynamic pro-
gramming to solve our problem. Once again, we want to work back-
wards, starting at t

STAGE 4: t

Departure
Arrival

t Smallest Cost City

G 3 3 G → t
H 4 4 H → t

STAGE 3: G,H

Departure
Arrival

G → t H → t Smallest Cost City

D 1 + 3 = 4 4 + 4 = 8 4 D → G
E 6 + 3 = 9 3 + 4 = 7 7 E → H
F 3 + 3 = 6 3 + 4 = 7 6 F → G

(For the first entry, we found the cost of D → G (1) and added it to
the cost of G → t (3) from the previous table)

STAGE 2: D,E, F

Dep.
Arr.

D → t E → t F → t Cost City

A 7 + 4 = 11 4 + 7 = 11 6 + 6 = 12 11 A → D or E
B 3 + 4 = 7 2 + 7 = 9 4 + 6 = 10 7 B → D
C 4 + 4 = 8 1 + 7 = 8 5 + 6 = 11 8 C → D or E



8 LECTURE 17: DYNAMIC PROGRAMMING

(For the first entry, we found the cost of A → D (7) and added it to
the smallest cost of D → t (4) from the previous table)

STAGE 1: A,B,C

Dep.
Arr.

A → t B → t C → t Cost City

s 2 + 11 = 13 4 + 7 = 11 3 + 8 = 11 11 s → B or C

(For the first entry, we found the cost of s → A (2) and added it to
the smallest cost of A → t (11) from the previous table)

Optimal Value: 11

Optimal Paths:

s → B → D → G → t

s → C → D → G → t

s → C → E → H → t



LECTURE 17: DYNAMIC PROGRAMMING 9

5. Application: Distance between Words

This is a fun application of dynamic programming, explaining roughly
how autocorrect on your phone works.

For example, “SUNNING” gets autocorrected to “STUNNING” be-
cause “STUNNING” is in the phone’s dictionary, and “SUNNING” is
only one letter away.

Given: Two words, like SUNNY and SNOWY

Allowable Moves:

• Insertion: Add a letter to a word, like SUNNY → STUNNY

• Deletion: Remove a letter from a word, like SUNNY→ UNNY

• Replacement: Replace a letter, like SUNNY → FUNNY

Definition:

The edit distance is the minimum amount of edits to transform
one word to another

Example 2:

Find the edit distance between SUNNY and SNOWY

The edit distance between SUNNY and SNOWY is 3 because one
possible transformation is

SUNNY → SNNNY → SNONY → SNOWY



10 LECTURE 17: DYNAMIC PROGRAMMING

And you can’t transform one word into another with 2 moves only.

Goal: Find the edit distance between two words:

Notation:

Given two words x[1, 2, · · · ,m] and y[1, 2, · · · , n], where m,n are the
lengths of x and y

Here x[1, 2, · · · , 5] = SUNNY and y[1, 2, · · · , 5] = SNOWY

In particular, we can define truncated words x[1, · · · , i] and y[1, · · · , j]

For example, if i = 2 and j = 3 then

x[1, 2] = SU and y[1, 2, 3] = SNO

Edit Distance:

E(i, j) = Edit Distance between truncations x[1, · · · , i] and y[1, · · · , j]

In this example, E(2, 3) = 2 (SU → SNU → SNO)

Goal: Calculate E(m,n) = E(5, 5)

In order to use dynamic programming, we have to imagine again a
friend who can do the task perfectly.

Trick: Consider the last letter x[i] = U of the first word, here U . For
the record, the last letter of the second word is y[j] = O.

Then you can do either of three things:

(1) Either delete x[i] = U from x[1, · · · , i], so SU → S



LECTURE 17: DYNAMIC PROGRAMMING 11

(2) Or insert y[j] to x[1, · · · , i], so SU → SUO

(3) Or replace x[i] with y[j], so SU → SN

(Here we pick the third option, but we don’t even need to know that,
that’s the beauty of it)

In option 1, we did 1 move, and are left to compare x[1, · · · , i−1] with
y[1, · · · , j] (since we already used the last letter of the x part)

In option 2, we did 1 move, and are left to compare x[1, · · · , i] with
y[1, · · · , j − 1] (since we already used the last letter of the y part)

In option 3, we did 0 or 1 moves (0 if both letters coincide, like swap-
ping S with S) and are left to compare x[1, · · · , i−1] and y[1, · · · , j−1]
(we used the last letters of both parts)

Dynamic Programming Formulation:

E(i, j) = min {1 + E(i− 1, j), 1 + E(i, j − 1), (0 or 1) + E(i− 1, j − 1)}

And then you let the algorithm run its course, until you hit the starting
step i = 0, in which case E(0, j) = j, or j = 0, in which case E(i, 0) = i.

Note: Here E(i, j) depends only on its immediate neighbors E(i−1, j),
E(i, j − 1) and E(i− 1, j − 1), as in the following picture



12 LECTURE 17: DYNAMIC PROGRAMMING

Example 3:

Edit distance between POLYNOMIAL and EXPONENTIAL

If you implement the algorithm above, you’ll find the edit distance is
6. The table below illustrates all the sub-calculations that are done

P O L Y N O M I A L
0 1 2 3 4 5 6 7 8 9 10

E 1 1 2 3 4 5 6 7 8 9 10
X 2 2 2 3 4 5 6 7 8 9 10
P 3 2 3 3 4 5 6 7 8 9 10
O 4 3 2 3 4 5 5 6 7 8 9
N 5 4 3 3 4 4 5 6 7 8 9
E 6 5 4 4 4 5 5 6 7 8 9
N 7 6 5 5 5 4 5 6 7 8 9
T 8 7 6 6 6 5 5 6 7 8 9
I 9 8 7 7 7 6 6 6 6 7 8
A 10 9 8 8 8 7 7 7 7 6 7
L 11 10 9 8 9 8 8 8 8 7 6


	1. Cheapest Flight Problem
	2. Dynamic Programming
	3. Ordering on Vertices
	4. Implementation
	5. Application: Distance between Words

