
LECTURE 18: INTEGER PROGRAMMING (I)

Today: Gentle introduction to Integer Programming

1. Motivation

Problem: Often with LP problems, you get non-integer solutions, like
x1 =

3
2 and x2 =

7
4 which might not make sense in context of a problem.

Example: If xi are number of people, it wouldn’t really make sense
to have 3

2 of a person

Example: If xi are flights, it wouldn’t make sense to take 2
3 of a flight

Example: Some commodities can’t be divided: Remember the orig-
inal motivation for Operations Research was in military operations.
There x1 might represent the number of submarines, and it again
wouldn’t make sense to produce 7

4 submarines.

Example: Towards the beginning of the course, we studied an exam-
ple of assigning classes to students, where xij = Put student i in class
j or not, then xij = 0 or 1, which requires our solutions to be integers

This leads to a special sub-class of LP called Integer Programming:

2. Integer Programming

It’s just like LP, except we require our variables to be integers:

Date: Thursday, November 10, 2022.

1



2 LECTURE 18: INTEGER PROGRAMMING (I)

Integer Programming:

max cTx

subject to Ax ≤ b

x ≥ 0

x ∈ Nn

Note: The same definition also works for non-linear programs

Note: Sometimes you have mixed LP where some variables are in-
tegers, but others are not

Example:

x1 = number of cars (integers)

x2 = amount of fuel being used (real)

There’s a special sub-class of integer programming called binary pro-
gramming which we’ll discuss now:

3. Binary Programming

Binary Variables:

If xi =

{
0 (no)

1 (yes)

Then xi is a binary variable



LECTURE 18: INTEGER PROGRAMMING (I) 3

Binary Programming:

max cTx

subject to Ax ≤ b

x ∈ {0, 1}n

Usually good when making decisions

Example: Assigning people to jobs, so if you have n people, then

xi =

{
0 if person i doesn’t get the job

1 if person i gets the job

We can play around with this to solve more interesting situations

Example: x2+x3+x5 = 1 means that exactly one of people 2, 3, 5 get
the job. This is because if no one gets the job, then you get 0+0+0 ̸= 1,
and if, say, two of those people get the job, then you get 1 + 1+ 0 ̸= 1

Example: x2+x3+x5 ≥ 1 means that at least one person gets the job

Example: Multiple Choice

Suppose you have 10 questions, with 3 choices 1, 2, 3 each, then

xij =

{
1 if for question i you pick j

0 if not

If for Question 5 you choose 3 but not 1 or 2, then x51 = 0, x52 =
0, x53 = 1



4 LECTURE 18: INTEGER PROGRAMMING (I)

Then “exactly one answer is correct” would mean xi1 + xi2 + xi3 = 1
(for i = 1, · · · , 10)

Whereas “at least one is correct” would mean xi1 + xi2 + xi3 ≥ 1

Example: Event Conditions

Suppose you have two binary variables x1 and x2 where

x1 =

{
1 if there’s an earthquake

0 if not

x2 =

{
1 if there’s an aftershock

0 if not

This is called an event condition, x2 happens only if x1 happens,
x2 ⇒ x1

Then we have the following table of possibilities:

x1

x2 1 0

1 ✓ ✓
0 X ✓

Basically everything can happen except for x1 = 0 and x2 = 1 (how
can there be an aftershock without an earthquake?)

Can rewrite this as x2 ≤ x1 (because can’t have 1 ≤ 0)

So here x2 ⇒ x1 means x2 ≤ x1



LECTURE 18: INTEGER PROGRAMMING (I) 5

More Generally:

If xn ⇒ xm then xn ≤ xm

Application: Another application of this is prerequisites: If Course 1
is a prequisite to Course 2, then again x2 ≤ x1 meaning that you can’t
take Course 2 without Course 1, but you could take both of them at
the same time.

Note: If you want to say “You have to take Course 1 and then 2, in
that order” (but you could take none of them), then you would say
x2 ≤ x1 and x1 + x2 ≤ 1

4. Solving Integer Programming Problems

In the next couple of lectures, we learn some algorithms for solving
Integer Programming problems, but they all have one main issue:

Problem: They’re all super slow!

There are some ways to get around this:

Solution 1: Instead of exact solutions, find approximate solutions

Example: A possible (albeit silly) way is to solve the same LP prob-
lem, but without the requirement that x ∈ Nn. This gives you for
example x1 = 2.3 and x2 = 4.6, and just round them to x1 = 2 and
x2 = 5



6 LECTURE 18: INTEGER PROGRAMMING (I)

Approximate solutions make sense in practice, I mean who really cares
if your optimal x1 is 9000 or 9001? ,

Of course we will need a way to measure a way of saying how good
your approximation is, which is called giving a bound on your solution.

It is also possible that your approximate solution falls outside your
feasible region, which might sometimes be ok, and sometimes not.

Solution 2: Rounding Techniques

Suppose your LP requires that xi ∈ {0, 1}

Instead, solve your LP but with xi ∈ [0, 1] instead, that is xi ≥ 0 and
xi ≤ 1. This gives you (possibly) non-integer values xi, say xi = 0.6
and then just round them up to the nearest integer, so xi = 1

Solution 3: Luck! Of course it could happen that by chance, the
solutions to your LP are already integers, in which case you don’t have
to do anything

Note: There are actually two instances where solving LP automati-
cally gives you integer solutions

One is for network problems/max flow problems, provided all the
constraints are integers.



LECTURE 18: INTEGER PROGRAMMING (I) 7

Another is if (by luck) all the corners of your feasible region have
integer coordinates, like in the following picture



8 LECTURE 18: INTEGER PROGRAMMING (I)

5. Airline Example

Here’s a neat application of binary programming.

Suppose you’re the CEO of PeyAmerican Airlines and you’re offering
12 possible sequences of flights from San Francisco (SFO) back to SFO,
given by the following table

Flight
Sequence

1 2 3 4 5 6 7 8 9 10 11 12

1. SFO → LAX 1 1 1 1
2. SFO → DEN 1 1 1 1
3. SFO → SEA 1 1 1 1
4. LAX → ORD 2 2 3 2 3
5. LAX → SFO 2 3 5 5
6. ORD → DEN 3 3 4
7. ORD → SEA 3 3 3 3 4
8. DEN → SFO 2 4 4 5
9. DEN → ORD 2 2 2
10. SEA → SFO 2 4 4 5
11. SEA → LAX 2 2 4 4 2
Cost ($1000’s) 2 3 4 6 7 5 7 8 9 9 8 9

The nonzero numbers in this table indicate the order of the flights

How to read this table:

Let’s look at Column 9 for example: This says Sequence # 9 first goes
from SFO to SEA (1 is in row 3) then from SEA to LAX (2 is in row
11) then from LAX to ORD (3 is in row 4) then from ORD to DEN
(4 is in row 6) then from DEN to SFO (5 is in row 5).



LECTURE 18: INTEGER PROGRAMMING (I) 9

So Flight Sequence # 9 is

SFO → SEA → LAX → ORD → DEN → SFO

And the total cost (see below) is $9000 (last row)

Our Goal: Assign 3 crews based in SFO to the sequences in such a
way that every flight (like SFO → LAX or ORD → DEN) has a crew.
The number in the last row is the cost of assigning a crew to sequence.

Our variables: The trick here is to assign sequences to crews (instead
of crews to sequences), so

xj =

{
1 if sequence j is assigned to a crew

0 otherwise

Objective Function:

The quantities are given by xj (0 or 1) and the costs are given by the
last row, so

z = 2x1+3x2+4x3+6x4+7x5+5x6+7x7+8x8+9x9+9x10+8x11+9x12

Constraints:

We need to assign 3 crews, so

x1 + x2 + · · ·+ x12 = 3

Moreover, each flight needs to have at least one crew.

For example, let’s look at SFO → LAX, which needs ≥ 1 crew. The
sequences that use SFO → LAX are sequences # 1, 4, 7, 10, and so



10 LECTURE 18: INTEGER PROGRAMMING (I)

x1 + x4 + x7 + x10 ≥ 1

Same thing for the other flights as well.

Binary LP Problem

min z = 2x1 + 3x2 + 4x3 + 6x4 + 7x5 + 5x6
+ 7x7 + 8x8 + 9x9 + 9x10 + 8x11 + 9x12

subject to x1 + · · ·+ x12 = 3

x1 + x4 + x7 + x10 ≥ 1

x2 + x5 + x8 + x11 ≥ 1

x3 + x6 + x9 + x12 ≥ 1

x4 + x7 + x9 + x10 + x12 ≥ 1

x1 + x6 + x10 + x11 ≥ 1

x4 + x5 + x9 ≥ 1

x7 + x8 + x10 + x11 + x12 ≥ 1

x2 + x4 + x5 + x9 ≥ 1

x5 + x8 + x11 ≥ 1

x3 + x7 + x8 + x12 ≥ 1

x6 + x9 + x10 + x11 + x12 ≥ 1

xj ∈ {0, 1}

Solution: It turns out that an optimal solution is x3 = 1, x4 = 1, x11 =
1 and all other xj = 0. That is, assign a crew to sequences # 3, 4, 11.
In that case the cost is 4 + 6 + 8 = 18 thousand dollars.

Another optimal solution would be x1 = 1, x5 = 1, x12 = 1

Notice it’s not very obvious how we got those optimal solutions!


	1. Motivation
	2. Integer Programming
	3. Binary Programming
	4. Solving Integer Programming Problems
	5. Airline Example

