
LECTURE 20: INTEGER PROGRAMMING (II)

Last time: Integer Programming (IP), where we assume xi to be an
integer, or even xi ∈ {0, 1} (binary/decision/yes-no variables)

1. “Or” Conditions

While this looks more restrictive at first, here is an example where
using IP actually gives us more freedom

Example 1:

max z

subject to 2x1 + 3x2 ≥ 4

or 4x1 + 5x2 ≥ 7

x1, x2 ≥ 0

In other words (at least) one of the two conditions is satisfied.

The cool thing is you can remove the “or” condition by introducing a
new binary variable y ∈ {0, 1}

max z

subject to 2x1 + 3x2 ≥ 4y

4x1 + 5x2 ≥ 7(1− y)

x1, x2 ≥ 0

y ∈ {0, 1}

Date: Thursday, November 17, 2022.

1



2 LECTURE 20: INTEGER PROGRAMMING (II)

Why? Think of y as an off/on switch. If y = 0 then 1− y = 1 so the
second constraint is satisfied, and if y = 1 then the first constraint is
satisfied. In either case, at least one constraint is satisfied.

Notice here y + (1− y) = 1

We can even generalize this to several constraints.

Example 2:

max z

subject to 2x1 + 3x2 ≥ 4

4x1 + 5x2 ≥ 7

3x1 + 4x2 ≥ 9

8x1 + 5x2 ≥ 10

x1, x2 ≥ 0

Suppose now you want to say “at least k = 3 constraints are satisfied”
Then you introduce binary variables y1, y2, y3, y4 ∈ {0, 1} that sum up
to 3 and rewrite your LP as

max z

subject to 2x1 + 3x2 ≥ 4y1
4x1 + 5x2 ≥ 7y2
3x1 + 4x2 ≥ 9y3
8x1 + 5x2 ≥ 10y4
x1, x2 ≥ 0

yi ∈ {0, 1}
y1 + y2 + y3 + y4 = 3



LECTURE 20: INTEGER PROGRAMMING (II) 3

This is because y1 + · · · y4 = 3 implies that at exactly three of the yi
are equal to 1, so at least 3 constraints are satisfied.

2. Several Values

In similar spirit, what if our variables take on more than 2 values?

Example 3:

maxz

subject to Constraints

x1 ∈ {2, 5, 8}
x2 ≥ 0

We can again reduce this to a binary problem by defining new binary
variables y1, y2, y3 that add up to 1, and add the constraint

x1 = 2y1 + 5y2 + 8y3

max z

subject to constraints

x1, x2 ≥ 0

x1 = 2y1 + 5y2 + 8y3

yi ∈ {0, 1}
y1 + y2 + y3 = 1

This is because if y1 = 0, y2 = 1, y3 = 0 (off/on/off), then x1 = 5, so
we indeed get the value 5, and similarly we can get the values 2 and 8
as well.



4 LECTURE 20: INTEGER PROGRAMMING (II)

Note: This should be reminiscent of indicator functions in probability
and analysis.

3. Application: Facility Location

Here’s another useful application of Integer Programming

Example 4:

You’re the mayor of Peyamgeles, and you’re trying to figure out
where to build hospitals

You can build hospitals at n = 30 possible locations and have
m = 1000 patients (clients) to be serviced.

Goal: Figure out where to build the hospitals, and assign each
patient to a location, while minimizing a total cost

This can be solved elegantly using binary variables:

Decision Variables:

First figure out where to build the hospitals. For each location j, let

yj =

{
1 if you build a hospital at j

0 otherwise

Then figure out if you service patient i at location j

xij =

{
1 if patient i is serviced at location j

0 otherwise

Objective Function:



LECTURE 20: INTEGER PROGRAMMING (II) 5

The cost of building a hospital at location j is cj

The cost to serve patient i at location j is dij (think cost of ambulance,
or medical bill)

We need to include both costs, so

z =
30∑
j=1

cjyj +
∑
i,j

dijxij

Constraints:

It makes no sense to serve a patient if there is no hospital, so we want
to avoid the 1 ≤ 0 scenario, and hence we require

xij ≤ yj for all i, j

(So if yj = 0 then xij = 0)

Finally, assume each patient gets assigned to exactly one location, so

30∑
j=1

xij = 1 for all i = 1, . . . , 1000

IP Problem:

min z =
30∑
j=1

cjyj +
∑
i,j

dijxij

subject to xij ≤ yj for all i, j
30∑
j=1

xij = 1 for all i = 1, . . . , 1000

xij, yj ∈ {0, 1}



6 LECTURE 20: INTEGER PROGRAMMING (II)

Note: This has a total of mn + m = (1000)(30) + 1000 = 31, 000
constraints. We can reduce that number using the following:

Trick: If you sum xij ≤ yj over all i, then you get

1000∑
i=1

xij ≤
1000∑
i=1

yj︸︷︷︸
no i

= 1000yj

This is equivalent to xij ≤ yj because in both cases you can show that
if yj = 0 then xij = 0 so we’re avoiding the 1 ≤ 0 issue.

min z =
30∑
j=1

cjyj +
∑
i,j

dijxij

subject to
1000∑
i=1

xij ≤ 1000yj for all j = 1, · · · , 30

30∑
j=1

xij = 1 for all i = 1, . . . , 1000

xij, yj ∈ {0, 1}

This new IP uses only n+m = 30 + 1000 = 1030 constraints! WOW

4. The Geometry of IP Problems

Let’s figure out how to solve IP problems, or, rather, how NOT to
solve IP problems



LECTURE 20: INTEGER PROGRAMMING (II) 7

Example 5:

max z = 5x1 + 8x2
subject to x1 + x2 ≤ 6

5x1 + 9x2 ≤ 45

x1, x2 ≥ 0

x1, x2 ∈ Z

We can draw the region in this case, see picture on the next page.

Note: To draw 5x1+9x2 = 45, best to use intercepts. The x1 intercept
is x1 = 9 and the x2 intercept is x2 = 5



8 LECTURE 20: INTEGER PROGRAMMING (II)

How would we go about solving this problem?



LECTURE 20: INTEGER PROGRAMMING (II) 9

Idea: Hey, let’s just ignore the fact that x1, x2 ∈ Z

Relaxed Problem: Same as above, but x1, x2 ∈ R.

This now becomes an LP problem.

Solving this, using simplex or by comparing all the vertices, the optimal
vertex becomes

(x1, x2) =

(
9

4
,
15

4

)
= (2.25, 3.75)⇝ z = 5(2.25) + 8(3.75) = 41.25

This point is labeled in purple, and is given here by the intersection of
the two lines.

Idea: Maybe the optimal IP solution is close!

Round: (2.25, 3.75) ≈ (2, 4)⇝ z = 5(2) + 8(4) = 42

This point is labeled in red.

Problem: (2, 4) is outside of the feasible region!

In fact, the first constraint is not satisfied because

5x1 + 9x2 = 5(2) + 9(4) = 46 > 45

Ok, so how about we look at the nearest point in the feasible region?



10 LECTURE 20: INTEGER PROGRAMMING (II)

There’s only two points to consider: (2, 3) and (3, 3), and the one
closest to (2.25, 3.75) in terms of distances is (2, 3)

(2, 3)⇝ z = 5(2) + 8(3) = 34

Is this the optimal point? Still no!

In fact, if you consider (0, 5), which is feasible, then

(0, 5)⇝ z = 5(0) + 8(5) = 40 better



LECTURE 20: INTEGER PROGRAMMING (II) 11

This point is labeled in green. In fact, it turns out that z = 40 is your
optimal value here

Point: The optimal IP solution can be far from the relaxed LP sol.

That said, not all is lost!

First of all, notice that the optimal IP value z = 40 is ≤ the optimal
LP value z = 41.25, so solving the LP at least gives us an upper bound
on our solution.

Moreover, this “zooming-in” feature will lead us to an algorithm called
branch-and-bound (next time), a divide-and-conquer algorithm that
allows us to solve IP by zooming in and solving mini-LP problems

5. Relaxation

To make the preceding discussion more rigorous:

Suppose you want to solve an IP with xi ∈ Z

Then the relaxed LP is the LP but with xi ∈ R

Similarly, if the IP requires xi ∈ {0, 1}, then the relaxed LP is the LP
with xi ∈ [0, 1] or xi ∈ R (depending on the context)

Let z be the optimal IP value and z⋆ be the optimal relaxed LP value

(so before we had z = 40 and z⋆ = 41.25)



12 LECTURE 20: INTEGER PROGRAMMING (II)

Fact: IP ≤ LP

z ≤ z⋆

In other words the LP gives us an upper bound on our IP solution.
In the above problem, without even solving the IP, we know that z is
at most 41.25.

Why? The IP is more restrictive, so it’s harder to get a max that’s
large. In the relaxed LP, the feasible region is bigger, we have more
freedom, so it’s easier to get a large max.

And again, those upper bounds will give us a way to solve IP problems,
just like the discussions motivating dual problems or min cuts.


	1. ``Or" Conditions
	2. Several Values
	3. Application: Facility Location
	4. The Geometry of IP Problems
	5. Relaxation

