LECTURE 20: INTEGER PROGRAMMING (II)

Last time: Integer Programming (IP), where we assume x_i to be an integer, or even $x_i \in \{0, 1\}$ (binary/decision/yes-no variables)

1. "OR" CONDITIONS

While this looks more restrictive at first, here is an example where using IP actually gives us *more* freedom

Example 1:

 $\max z$ subject to $2x_1 + 3x_2 \ge 4$ $\underline{\mathbf{or}} \ 4x_1 + 5x_2 \ge 7$ $x_1, x_2 \ge 0$

In other words (at least) one of the two conditions is satisfied.

The cool thing is you can remove the "or" condition by introducing a new binary variable $y \in \{0, 1\}$

$$\max z$$

subject to $2x_1 + 3x_2 \ge 4y$
 $4x_1 + 5x_2 \ge 7(1 - y)$
 $x_1, x_2 \ge 0$
 $y \in \{0, 1\}$

Date: Thursday, November 17, 2022.

Why? Think of y as an off/on switch. If y = 0 then 1 - y = 1 so the second constraint is satisfied, and if y = 1 then the first constraint is satisfied. In either case, at least one constraint is satisfied.

Notice here y + (1 - y) = 1

We can even generalize this to several constraints.

Example 2:	
	$\max z$
	subject to $2x_1 + 3x_2 \ge 4$
	$4x_1 + 5x_2 \ge 7$
	$3x_1 + 4x_2 \ge 9$
	$8x_1 + 5x_2 \ge 10$
	$x_1, x_2 \ge 0$

Suppose now you want to say "at least k = 3 constraints are satisfied" Then you introduce binary variables $y_1, y_2, y_3, y_4 \in \{0, 1\}$ that sum up to 3 and rewrite your LP as

$$\max z \text{subject to } 2x_1 + 3x_2 \ge 4y_1 4x_1 + 5x_2 \ge 7y_2 3x_1 + 4x_2 \ge 9y_3 8x_1 + 5x_2 \ge 10y_4 x_1, x_2 \ge 0 y_i \in \{0, 1\} y_1 + y_2 + y_3 + y_4 = 3$$

 $\mathbf{2}$

This is because $y_1 + \cdots + y_4 = 3$ implies that at exactly three of the y_i are equal to 1, so at least 3 constraints are satisfied.

2. Several Values

In similar spirit, what if our variables take on more than 2 values?

Example 3:	
	$\max z$
	subject to Constraints
	$x_1 \in \{2, 5, 8\}$
	$x_2 \ge 0$

We can again reduce this to a binary problem by defining new binary variables y_1, y_2, y_3 that add up to 1, and add the constraint

$$x_1 = 2y_1 + 5y_2 + 8y_3$$

 $\max z$ subject to constraints $x_1, x_2 \ge 0$ $x_1 = 2y_1 + 5y_2 + 8y_3$ $y_i \in \{0, 1\}$ $y_1 + y_2 + y_3 = 1$

This is because if $y_1 = 0, y_2 = 1, y_3 = 0$ (off/on/off), then $x_1 = 5$, so we indeed get the value 5, and similarly we can get the values 2 and 8 as well.

Note: This should be reminiscent of indicator functions in probability and analysis.

3. Application: Facility Location

Here's another useful application of Integer Programming

Example 4:

You're the mayor of Peyamgeles, and you're trying to figure out where to build hospitals

You can build hospitals at n = 30 possible locations and have m = 1000 patients (clients) to be serviced.

Goal: Figure out where to build the hospitals, and assign each patient to a location, while minimizing a total cost

This can be solved elegantly using binary variables:

Decision Variables:

First figure out where to build the hospitals. For each location j, let

$$y_j = \begin{cases} 1 & \text{if you build a hospital at } j \\ 0 & \text{otherwise} \end{cases}$$

Then figure out if you service patient i at location j

$$x_{ij} = \begin{cases} 1 & \text{if patient } i \text{ is serviced at location } j \\ 0 & \text{otherwise} \end{cases}$$

Objective Function:

The cost of building a hospital at location j is c_j

The cost to serve patient i at location j is d_{ij} (think cost of ambulance, or medical bill)

We need to include both costs, so

$$z = \sum_{j=1}^{30} c_j y_j + \sum_{i,j} d_{ij} x_{ij}$$

Constraints:

It makes no sense to serve a patient if there is no hospital, so we want to avoid the $1 \leq 0$ scenario, and hence we require

$$x_{ij} \leq y_j$$
 for all i, j

(So if $y_j = 0$ then $x_{ij} = 0$)

Finally, assume each patient gets assigned to exactly one location, so

$$\sum_{j=1}^{30} x_{ij} = 1 \text{ for all } i = 1, \dots, 1000$$

IP Problem:

$$\min z = \sum_{j=1}^{30} c_j y_j + \sum_{i,j} d_{ij} x_{ij}$$

subject to $x_{ij} \le y_j$ for all i, j
$$\sum_{j=1}^{30} x_{ij} = 1 \text{ for all } i = 1, \dots, 1000$$
$$x_{ij}, y_j \in \{0, 1\}$$

Note: This has a total of mn + m = (1000)(30) + 1000 = 31,000 constraints. We can reduce that number using the following:

Trick: If you sum $x_{ij} \leq y_j$ over all *i*, then you get

$$\sum_{i=1}^{1000} x_{ij} \le \sum_{i=1}^{1000} \underbrace{y_j}_{\text{no } i} = 1000y_j$$

This is equivalent to $x_{ij} \leq y_j$ because in both cases you can show that if $y_j = 0$ then $x_{ij} = 0$ so we're avoiding the $1 \leq 0$ issue.

$$\min z = \sum_{j=1}^{30} c_j y_j + \sum_{i,j} d_{ij} x_{ij}$$

subject to $\sum_{i=1}^{1000} x_{ij} \le 1000 y_j$ for all $j = 1, \dots, 30$
 $\sum_{j=1}^{30} x_{ij} = 1$ for all $i = 1, \dots, 1000$
 $x_{ij}, y_j \in \{0, 1\}$

This new IP uses only n + m = 30 + 1000 = 1030 constraints! WOW

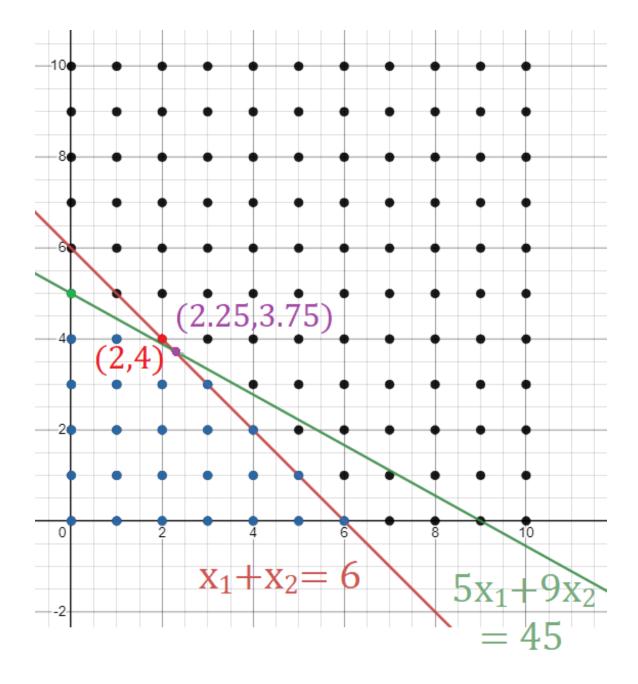
4. The Geometry of IP Problems

Let's figure out how to solve IP problems, or, rather, how **NOT** to solve IP problems

Example 5:
$\max z = 5x_1 + 8x_2$
subject to $x_1 + x_2 \le 6$
$5x_1 + 9x_2 \le 45$
$x_1, x_2 \ge 0$
$x_1, x_2 \in \mathbb{Z}$
_/

We can draw the region in this case, see picture on the next page.

Note: To draw $5x_1+9x_2 = 45$, best to use intercepts. The x_1 intercept is $x_1 = 9$ and the x_2 intercept is $x_2 = 5$



How would we go about solving this problem?

Idea: Hey, let's just ignore the fact that $x_1, x_2 \in \mathbb{Z}$

Relaxed Problem: Same as above, but $x_1, x_2 \in \mathbb{R}$.

This now becomes an LP problem.

Solving this, using simplex or by comparing all the vertices, the optimal vertex becomes

$$(x_1, x_2) = \left(\frac{9}{4}, \frac{15}{4}\right) = (2.25, 3.75) \rightsquigarrow z = 5(2.25) + 8(3.75) = 41.25$$

This point is labeled in purple, and is given here by the intersection of the two lines.

Idea: Maybe the optimal IP solution is close!

Round:
$$(2.25, 3.75) \approx (2, 4) \rightsquigarrow z = 5(2) + 8(4) = 42$$

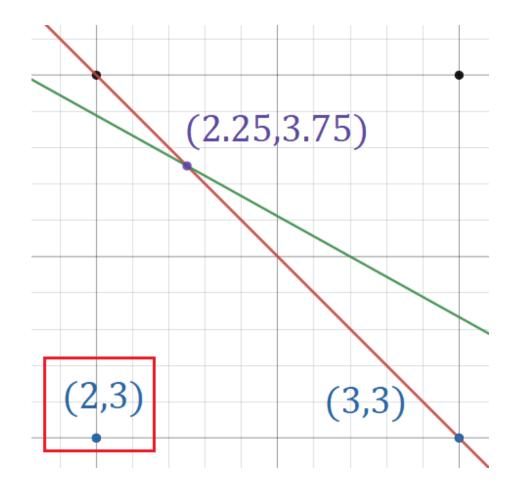
This point is labeled in red.

Problem: (2, 4) is **outside** of the feasible region!

In fact, the first constraint is not satisfied because

$$5x_1 + 9x_2 = 5(2) + 9(4) = 46 > 45$$

Ok, so how about we look at the nearest point in the feasible region?



There's only two points to consider: (2,3) and (3,3), and the one closest to (2.25, 3.75) in terms of distances is (2,3)

$$(2,3) \rightsquigarrow z = 5(2) + 8(3) = 34$$

Is this the optimal point? Still no!

In fact, if you consider (0, 5), which is feasible, then

$$(0,5) \rightsquigarrow z = 5(0) + 8(5) = 40$$
 better

This point is labeled in green. In fact, it turns out that z = 40 is your optimal value here

Point: The optimal IP solution can be far from the relaxed LP sol.

That said, not all is lost!

First of all, notice that the optimal IP value z = 40 is \leq the optimal LP value z = 41.25, so solving the LP at least gives us an upper bound on our solution.

Moreover, this "zooming-in" feature will lead us to an algorithm called branch-and-bound (next time), a divide-and-conquer algorithm that allows us to solve IP by zooming in and solving mini-LP problems

5. Relaxation

To make the preceding discussion more rigorous:

Suppose you want to solve an IP with $x_i \in \mathbb{Z}$

Then the **relaxed** LP is the LP but with $x_i \in \mathbb{R}$

Similarly, if the IP requires $x_i \in \{0, 1\}$, then the **relaxed** LP is the LP with $x_i \in [0, 1]$ or $x_i \in \mathbb{R}$ (depending on the context)

Let z be the optimal IP value and z^* be the optimal relaxed LP value

(so before we had z = 40 and $z^* = 41.25$)

In other words the LP gives us an **upper bound** on our IP solution. In the above problem, without even solving the IP, we know that z is at most 41.25.

Why? The IP is more restrictive, so it's harder to get a max that's large. In the relaxed LP, the feasible region is bigger, we have more freedom, so it's easier to get a large max.

And again, those upper bounds will give us a way to solve IP problems, just like the discussions motivating dual problems or min cuts.