
APMA 1210 Midterm 2 Practice Exam

November 2022

1 Shadow Prices

(a) Note that although this is a minimization problem, we can compute shadow
prices the same way; it’s just that an increase in z is bad instead of good.
Changing the first constraint to E+B ≤ 6 will not change the optimal solu-
tion, so its shadow price is zero. Similarly, changing the second constraint
to 12E + 8B ≥ 25 also will not change the optimal solution - it swaps
the vertex (0, 3) of the feasible region for a pair of vertices (0.25, 2.75)
and (0, 3.125) but neither of these yields a smaller z-value. Therefore this
constraint also has a shadow price of zero. What if we change the third
constraint to E +2B ≥ 5? Then the feasible region changes dramatically,
with vertices at (1, 2) and (5, 0) - overlapping an existing vertex - instead
of (2, 1) and (4, 0). The optimal value is now z = 0.8 at the vertex (1, 2),
meaning 0.1 is the shadow price for this constraint. For the fourth con-
straint, changing it to 12E + 12B ≥ 37 means that it now intersects the
constraint E + 2B ≥ 4 at (2 1

6 ,
11
12), and this vertex remains optimal with

z = 0.7083 as the new optimal value. Therefore the shadow price is 0.0083
for this constraint.

(b) For ease of finding the dual, first rewrite the first constraint to be −E −
B ≥ −5. Using variable names that correspond to the meanings of each
constraint, the dual problem for this LP is as follows:

Maximize: z = −5T + 24F + 4P + 36C

Subject to: − T + 12F + P + 12C ≤ 0.2

− T + 8F + 2P + 12C ≤ 0.3

T, F, P,C ≥ 0

Solving this LP yields an optimal value of z = 0.7 (matching the original
problem) at the vertex (0, 0, 0.1, 0.0083) which corresponds precisely to
our previous findings.

1

2 Game Theory

(a) The gains matrix is as follows, with a 1 on the row/column indicating
the choice to hold up 1 finger, and a 2 indicating the choice to hold up 2
fingers. Note that this is the gains matrix for Player 1 in particular:

1 2
1 2 -3
2 -3 4

(b) First let x1, x2 represent the probabilities that Player 1 raise 1 finger or 2
fingers. Player 2’s best strategy to defend against Player 1 is established
by z = min{2x1−3x2,−3x1+4x2}, i.e. z ≤ 2x1−3x2 and z ≤ −3x1+4x2

as inequality structures. This means that Player 1, seeking to modify these
probabilites to maximize their own gains, should solve the LP:

Maximize: z

Subject to: − 2x1 + 3x2 + z ≤ 0

3x1 − 4x2 + z ≤ 0

x1 + x2 = 1

x1, x2 ≥ 0

Conversely, let y1, y2 represent the probabilities that Player 2 raise 1 finger
or 2 fingers. Player 1’s best strategy to make advances against Player
2 is established by z = max{2y1 − 3y2,−3y1 + 4y2}, or in the form of
inequalities, z ≥ 2y1 − 3y2 and z ≥ −3y1 + 4y2. Therefore to minimize
the losses for Player 2, the following LP should be solved:

Minimize: z

Subject to: − 2y1 + 3y2 + z ≥ 0

3y1 − 4y2 + z ≥ 0

y1 + y2 = 1

y1, y2 ≥ 0

3 Setting Up a Network LP

(a) We will construct this network by drawing an edge from one town to
another town if a road exists between them. The edge will be directed
according to the start and end information in the table. Each edge has
a cost in the form of a distance according to the table, but no explicit
capacity; however, since we are planning a journey for a single car, we
should enforce a capacity of 1 on each edge. For the nodes, the origin is
supplying 1 car and the campsite has a demand of 1 car, but all other
nodes have demands of 0. The resulting network is shown below, using s
to represent the starting point and t to represent the campsite.

2

(b) Since all edges have the same capacity, we can combine their capac-
ity constraints with their non-negativity constraints for a constraint of
the form 0 ≤ xij ≤ 1 where edge (i, j) exists in the network, i, j ∈
{s,A,B,C,D,E, t}. Our objective function will have the form z =

∑
cijxij

using the costs on each edge, and every intermediate node will have a flow
balance constraint of the form

∑
{edges out} −

∑
{edges in} = 0. The

origin s and campsite t will have similar constraints, but with demands of
1 and -1, respectively. The resulting LP is:

Minimize: z = 40xsA + 60xsB + 50xsC + 10xAB70xAD + 20xBC + 55xBD

+ 40xBE + 50xCE + 10xDE + 60xDt + 80xEt

Subject to: xsA + xsB + xsC = 1

xAB + xAD − xsA = 0

xBC + xBD + xBE − xsB − xAB = 0

xCE − xsC − xBC = 0

xDE + xDt − xAD − xBD = 0

xEt − xBE − xCE − xDE = 0

− xDt − xEt = −1

0 ≤ xij ≤ 1, (i, j) is in the network, i, j ∈ {s,A,B,C,D,E, t}

4 Network Simplex Algorithm

If we start from the leaf e, the edge (g, e) will need to have a weight of 2 to
satisfy the demand at that leaf. This accounts for 2 of the 5 units that need to
be sent out from g, which has only one other incident edge, so we immediately
find that the edge (g, b) should have a weight of 3 to balance the demand at g.
Then b has 3 units in and a demand of 0, so it must send 3 units out along its
only other incident edge (b, a), meaning this edge has a weight of 3. Note that
aside from (b, a), a has two other edges incident on it, so we cannot analyze it
yet. We turn instead to the leaf d, and weight the edge (a, d) with 6 units to
satisfy its demand. Now there is only 1 edge left on a, which has 3 units in from

3

b and 6 units out to d, so to satisfy its demand of 0 the edge (f, a) must have
weight 3. Finally, edge (f, c) must then have weight 6 to simultaneously satisfy
the remaining node weights on f and c.

Having established this, we must now check for optimality and subsequently
choose a step to take, which requires computing the reduced cost for all edges
not in the tree - that’s the set {(a, c), (a, e), (b, c), (b, e), (d, b), (d, e), (f, b), (f, g)}.
Notice that when computing reduced costs, the cost of the edge you are adding to
create the cycle is included. These reduced costs are outlined in the table below:

Edge Same direction Opposite direction Reduced cost

(a, c) (a, c), (f, a) (f, c) 48+56-108=-4
(a, e) (a, e), (g, b), (b, a) (g, e) 10+33+7-19=31
(b, c) (b, c), (f, a) (f, c), (b, a) 65+56-108-7=6
(b, e) (b, e), (g, b) (g, e) 7+33-19=21
(d, b) (d, b), (b, a), (a, d) N/A 38+7+28=73
(d, e) (d, e), (g, b), (b, a), (a, d) (g, b) 15+33+7+28-19=64
(f, b) (f, b), (b, a) (f, a) 48+7-56=-1
(f, g) (f, g), (g, b), (b, a) (f, a) 24+33+7-56=8

Only two edges, (a, c) and (f, b), have a negative reduced cost. Of these,
(a, c) is the most negative, so this is the edge we will add to the spanning tree.
There are only 3 edges in the resulting cycle - one is (a, c) itself, and there is
only one edge in the opposite direction in this cycle, so we will increase the flow
on (a, c) until that edge has been cancelled out, and adjust the flow accordingly
on the remaining edge (f, a) accordingly. Thus the new spanning tree will no
longer include (f, c), and will have a flow of 6 on (a, c) and a flow of 9 on (f, a)
but all other edges will look the same.

We can now check for optimality and select a new step if needed. Note that
the only edges that require recalculation are the ones for which (f, c) was pre-
viously involved in the cycle; all others will have the same reduced cost. For
completeness, the full table is included again below:

Edge Same direction Opposite direction Reduced cost

(a, e) (a, e), (g, b), (b, a) (g, e) 10+33+7-19=31
(b, c) (b, c) (a, c), (b, a) 65-48-7=10
(b, e) (b, e), (g, b) (g, e) 7+33-19=21
(d, b) (d, b), (b, a), (a, d) N/A 38+7+28=73
(d, e) (d, e), (g, b), (b, a), (a, d) (g, b) 15+33+7+28-19=64
(f, b) (f, b), (b, a) (f, a) 48+7-56=-1
(f, c) (f, c) (a, c), (f, a) 108-48-56=4
(f, g) (f, g), (g, b), (b, a) (f, a) 24+33+7-56=8

Now there is only one edge - (f, b) - with a negative reduced cost, so we will
add it to our spanning tree. Again, the resulting cycle contains only 3 edges,

4

and of those only 1 is in the opposite direction to (f, b). So we increase the flow
on the cycle, raising the resulting flow on (f, b) and correspondingly (b, a), until
the flow on the opposing edge (f, a) is cancelled out. The result is that (f, b)
will have a flow of 9, (b, a) will have a flow of 12, (f, a) is removed from the tree,
and the rest of the tree stays the same.

Once again, we check for optimality by evaluating the reduced costs on all
edges not currently in the spanning tree, paying particular attention to those
which previously would have created cycles involving (f, a). All other edges will
have the same reduced cost, included here for completeness:

Edge Same direction Opposite direction Reduced cost

(a, e) (a, e), (g, b), (b, a) (g, e) 10+33+7-19=31
(b, c) (b, c) (a, c), (b, a) 65-48-7=10
(b, e) (b, e), (g, b) (g, e) 7+33-19=21
(d, b) (d, b), (b, a), (a, d) N/A 38+7+28=73
(d, e) (d, e), (g, b), (b, a), (a, d) (g, b) 15+33+7+28-19=64
(f, a) (f, a) (b, a), (f, b) 56-7-48=1
(f, c) (f, c) (a, c), (b, a), (f, b) 108-48-7-48=5
(f, g) (f, g), (g, b) (f, b) 24+33-48=9

Now all reduced costs are positive, indicating that this spanning tree is
optimal. Therefore the optimal spanning tree to respect the demands of each
node consists of the edges {(a, c), (a, d), (b, a), (f, b), (g, b), (g, e)}, with flows of
6, 6, 12, 9, 3, and 2 respectively.

5 Max Flow and Min Cut

In the solution for this problem, we will present the first s − t path and its
residual, and then for every subsequent path we will present the path, the
augmented graph, and the residual, until the residual reveals that there are no
more s− t paths. Note that on the residual graphs, reversed edges are drawn in
green and edges pointing in their original direction are drawn in red, but both
green and red edges can be utilized to construct a viable s − t path so long
as they are utilized in the direction they point. This process will ultimately
indicate that the max flow is 19, with the following corresponding min cut:

5

We begin with a single s− t path and its residual. Note that the first path
is its own augmented flow graph, so there is no need to redraw it.

Figure 1: Selection of first s−t path (blue for flow) and resulting residual graph.
Path: s → 1 → 4 → t

Figure 2: Selection of second s − t path, resulting augmented flow graph, and
residual of augmented flow graph. Path: s → 2 → 3 → 5 → t

For the third step, we use both red and green edges to construct an s − t
path - this is the benefit of using the residual approach.

6

Figure 3: Selection of third s − t path, resulting augmented flow graph, and
residual of augmented flow graph. Path: s → 3 → 2 → 5 → t

Figure 4: Selection of fourth s − t path, resulting augmented flow graph, and
residual of augmented flow graph. Path: s → 2 → 3 → 4 → t

7

After this fourth stage, there is no longer any way to follow the directed
arrows to get an s− t path. The maximum flow is a total of 19 units along the
paths indicated in the augmented flow graph, which is included separately here
for ease of viewing:

Figure 5: Augmented flow graph from fourth stage, which gives the max flow
through the network

Note that in the final residual graph, five of the edges have maximal forward
flow on them (indicated by the absence of a red edge for more available forward
units). Four of these edges are the edges that are cut in the minimum-weight
cut indicated at the beginning of this problem. This is always true - the edges
removed to create a min cut are always edges on which there is maximal flow in
the max flow solution. In this case, these edges are {(1, 4), (2, 5), (3, 4), (3, 5)}
for a cut such that the sets of vertices are {s, 1, 2, 3} and {4, 5, t}.

6 Dynamic Programming

This problem will be a 3-stage problem, where at each stage we consider how
many funding blocks to assign to each project. (A slight apologetic disclaimer:
the hint was supposed to indicate that the values at each stage needed to repre-
sent the remaining available funds, but was poorly written.) By the end we can
reasonably assume we should have assigned all four blocks of $5,000 in funds, so
as we go along we want to keep track of how many blocks have been assigned so
far. We can think of this as a network, where each stage has vertices represent-
ing 0-4 blocks of funding remaining for assignment, and the edges coming into
vertices in a stage indicate how many blocks of funding are being assigned to
that project. Note that the final stage will have 5 vertices but edges should only
come into the vertex representing 0 blocks remaining, since we should assign all
4 blocks by the time the program is complete. We should also have a zero-stage
(starting vertex) indicating that 4 blocks are available. The network looks like
this, where all edges should be followed to the right:

8

Figure 6: Dynamic programming network. Project 1 is the purple box, Project
2 is the green box, Project 3 is the pink box.

Each edge indicates the number of funding blocks being assigned to the next
project from the available pool. For convenience in constructing tables, we will
label these vertices (other than s) as P1i, P2i, P3i where i = 0, 1, 2, 3, 4. So for
example the ending vertex is P30. The value carried through the network is the
total number of hours saved through the funding allocation, so our goal is the
following:

f(P30) = max(f(P20), f(P21) + 3, f(P22) + 6, f(P23) + 8, f(P24) + 9)

Note that the quantities being added to each recursive function call are the
amounts of time that would be saved by allocating 0, 1, 2, 3, or 4 blocks of
funding to Project 3, respectively, corresponding to the number of available
blocks remaining once Project 1 and Project 2 have been allocated. Following
this paradigm, we begin to construct our tables. A dash will indicate that no
route exists between a particular starting vertex and route option.

Stage 3:

Vertex t = P30 Max savings Best route
P20 0 0 P20 → t
P21 3 3 P21 → t
P22 6 6 P22 → t
P23 8 8 P23 → t
P24 9 9 P24 → t

9

Stage 2:

Vertex P20 → t P21 → t P22 → t P23 → t P24 → t Max savings Best route
P10 0+0 - - - - 0 P10 → P20
P11 4+0 0+3 - - - 4 P11 → P20
P12 7+0 4+3 0+6 - - 7 P12 → P20, P21
P13 9+0 7+3 4+6 0+8 - 10 P13 → P21, P22
P14 11+0 9+3 7+6 4+8 0+9 13 P14 → P22

Stage 1:

Vertex P10 → t P11 → t P12 → t P13 → t P14 → t Max savings Best route
s 8+0 7+4 5+7 3+10 0+13 13 s → P13, P14

According to these, the maximum savings is 13 hours and can be achieved in
3 ways. First, one could assign no funding to Project 1, and 2 blocks of funding
each to Project 2 and Project 3. Second, one could assign 1 block of funding to
Project 1, 2 blocks to Project 2, and 1 block to Project 3. Or third, one could
assign 1 block of funding to Project 1, 1 block to Project 2, and 2 blocks to
Project 3. Any of these paths will give the optimal result.

10

