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1 Questions

1.1 Duality of Max Flow

Consider the general maximum flow problem, with a source s, sink t, and n
intermediate vertices. Let all intermediate nodes have no demand, and let qij
be the capacity constraint on edge i → j, i = s, 1, 2, ..., n, j = 1, 2, ..., n, t. Write
out the max flow problem as an LP using these parameters, then write down a
minimization problem that is dual to the max flow problem. Without using
the result that max flow and min cut are dual problems, how might you
go about showing that the result of this minimization problem is the minimum
cut on the graph? (What do the constraints and variables represent? What
do these have to do with the min cut problem?) Please note that you DO
NOT have to construct a formal proof of your minimization problem yielding
the minimum cut - the goal is to build intuition about this dual relationship.

1.2 The Gold Mine Problem

Given a gold mine modeled as an m-by-n grid M , each grid cell in this mine
is associated with a positive integer gij (i = 1, ...,m, j = 1, ..., n) which is the
amount of gold in tons that can be mined in that cell. Initially, the miner is
at the first column but can be at any row. From the miner’s current position,
he can move only right or right up or right down from the current cell, i.e.,
the miner can move to the cell diagonally up towards the right or horizontally
towards the right or diagonally down towards the right. As the miner moves
across the grid from the first column to the n-th column, he mines all of the
gold in each cell he passes through.

(a) Devise a dynamic programming strategy to figure out the maximum amount
of gold the miner can collect. Make sure to identify what the vertices would
be, what the partial ordering you need is, and what the set of recursive
formulas are to compute the results. Watch out for edge cases!

1



(b) Use your strategy to solve the problem for the following 4-by-3 grid:
1 5 12
2 4 4
0 6 4
3 0 0

2 Solutions

2.1 Duality of Max Flow

In the general max flow problem, the flows out of s and into t must be equal
in magnitude; we will assume that this is accounted for. Then the maximum
flow can be identified as the sum of all flows out from the source s. Let xij be
our decision variables, representing the flow from vertex i to vertex j, and let E
represent the set of directed edges in the network. Then the max flow problem
can be written as:

Maximize: z =
∑

(s,i)∈E

xsi

Subject to:
∑

(j,i)∈E

xji −
∑

(i,k)∈E

xik = 0, i = 1, ..., n

xij ≤ qij , i = s, 1, ..., n, j = 1, ..., n, t, (i, j) ∈ E

xij ≥ 0

Note that since the flow balance constraints sum to 0, they do not produce
decision variables that will go into the objective function of the dual problem.
Instead, the objective function will get exactly 1 decision variable for each ca-
pacity constraint, i.e. each edge. We will call these variables yij . However, the
flow balance constraints do still produce decision variables - one for each vertex
- that are important for the constraints, since they ensure that the matrices
work out appropriately. We can call these variables vi for i = 1, ..., n; these will
be unconstrained, while the edge-based variables get the usual non-negativity
constraints. Then for the edges coming from the source vertex, we will get
constraints that look like ysj + vj ≥ 1; for all other edges, the constraints will
have a ≥ 0 form in alignment with the fact that these edges are not part of the
objective function in the max flow problem. The final dual LP looks like this:

Minimize: z =
∑

(i,j)∈E

qijyij

Subject to: ysj + vj ≥ 1, (s, j) ∈ E

yij − vi + vj ≥ 0, (i, j) ∈ E

yit − vi ≥ 0, (i, t) ∈ E

yij ≥ 0
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Note that in this problem, there is exactly one constraint for each edge in
the graph, and no additional constraints. When solved, this problem will set
yij = 1 for any edge (i, j) such that i ∈ S, j ∈ T , and vi = 1 for any vertex
i ∈ S. The first set of constraints ensures that if j ∈ T , the edge (s, j) must
be in the cut; the second set of constraints ensures that if i ∈ S, j ∈ T , the
edge (i, j) must be in the cut; and the third set of constraints ensures that if
i ∈ S, the edge (i, t) must be in the cut (where all of these are contingent on
the existence of their associated edges).

2.2 The Gold Mine Problem

(a) We’ll define the dynamic programming result on a cell-wise basis, where
f(i, j) will be the maximum amount of gold that the miner can have
collected upon reaching cellMi,j . We can also talk about a partial ordering
on the cells, where the relation is Mi,j > Mk,l if there exists a sequence
of steps by which the miner can get from Mk,l to Mi,j . Moreover, for a
given cell Mi,j , it can be reached from Mi−1,j−1,Mi,j−1, and Mi+1,j−1

unless i = 1 (in which case there is no Mi−1,j−1 or i = m (in which case
there is no Mi+1,j−1. If you would prefer to think of this as a network,
consider a source vertex s from which the miner starts where he can step
to any cell in the first column, and a sink vertex t to which the miner
can step from any cell in the last column. All other steps within the cell
network must obey the provided rules, and each edge adds the weight gij
associated with the origin cell (so edges from s will add no weight). In
recursive form, we are solving t = max{f(i, n)} over i = 1, ...,m, where
we calculate f(i, j) = gij +max{f(i− 1, j − 1), f(i, j − 1), f(i+ 1, j − 1)}
for i = 2, ...,m − 1, f(1, j) = g1j + max{f(1, j − 1), f(2, j − 1)}, and
f(m, j) = gmj +max{f(m− 1, j − 1), f(m, j − 1)}. The initial conditions
for this setup are f(i, 1) = gi1, the amount of gold found at position Mi,1.

(b) There are three columns, so four stages to the dynamic programming
process; the first stage is the step from s, and the last stage is the step to
t. Whenever a cell can’t reach some other cell, we’ll assign a max gold of
0 to that route. Ties will be broken at random.

Stage 4:

Leading cell t Max gold Best route
M1,3 12 12 M1,3 → t
M2,3 4 4 M2,3 → t
M3,3 4 4 M3,3 → t
M4,3 0 0 M4,3 → t

Stage 3:

Leading cell M1,3 → t M2,3 → t M3,3 → t M4,3 → t Max gold Best route
M1,2 17 9 0 0 17 M1,2 → M1,3

M2,2 16 8 8 0 16 M2,2 → M1,3

M3,2 0 10 10 6 10 M3,2 → M3,3

M4,2 0 0 4 0 4 M4,2 → M3,3
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Stage 2:

Leading cell M1,2 → t M2,2 → t M3,2 → t M4,2 → t Max gold Best route
M1,1 18 17 0 0 18 M1,1 → M1,2

M2,1 19 18 12 0 19 M2,1 → M1,2

M3,1 0 16 10 4 16 M3,1 → M2,2

M4,1 0 0 13 7 13 M4,1 → M3,2

Stage 1:
Leading cell M1,3 → t M2,3 → t M3,3 → t M4,3 → t Max gold Best route

s 18 19 16 13 19 s → M2,1

So our final solution is the path s → M2,1 → M1,2 → M1,3 → t, i.e. the
grid path M2,1 → M1,2 → M1,3, for a total of 19 tons of gold mined.

4


