
LECTURE 23: NON-LINEAR PROGRAMMING (II)

1. The True Second-Derivative Test

Video: The True Second-Derivative Test

How to find the local max/min of a function in higher dimensions.

Example 1:

Find the local max/min/saddle points of

f(x1, x2) = (x1)
4 + (x2)

4 − 4 (x1) (x2) + 1

Date: Thursday, December 1, 2022.
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https://www.youtube.com/watch?v=9fagVI87AzY
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STEP 1: Critical Points

Recall: (1D) c is a CP of f if f ′(c) = 0 (or f ′ doesn’t exist)

Definition: (Critical Point)

(a, b) is a critical point of f if fx1
(a, b) = 0 and fx2

(a, b) = 0

This is sometimes written as ∇f(a, b) = (0, 0)

fx1
=4 (x1)

3 − 4x2 = 0

fx2
=4 (x2)

3 − 4x1 = 0

The first equation gives x2 = (x1)
3 and plugging this into the second

equation, we get

4
(
(x1)

3
)3

− 4x1 = 0 ⇒ 4 (x1)
9 − 4x1 = 0 ⇒ 4x1

(
(x1)

8 − 1
)
= 0

This gives us x1 = 0 or (x1)
8 = 1 that is, x1 = 0 or x1 = 1 or x1 = −1

Case 1: x1 = 0 then x2 = (x1)
3 = 03 = 0 which gives us (0, 0)

Case 2: x1 = 1 then x2 = (x2)
3 = 13 = 1 which gives (1, 1)

Case 3: x1 = −1 then x2 = (−1)3 = −1 which gives (−1,−1)

Conclusion: The critical points are (0, 0), (1, 1), (−1,−1)

STEP 2: Second derivatives

Recall: (1D) f ′′(c) > 0 ⇒ local min, f ′′(c) < 0 ⇒ local max
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Here there are 4 second derivatives, so let’s put them in a matrix

Definition:

D2f(x1, x2) =

[
fx1x1

fx1x2

fx2x1
fx2x2

]

fx1x1
=
(
4 (x1)

3 − 4x2

)
x1

= 12 (x1)
2

fx1x2
=
(
4 (x1)

3 − 4x2

)
x2

= −4

fx2x1
=
(
4 (x2)

3 − 4x1

)
x1

= −4

fx2x2
=
(
4 (x2)

3 − 4x1

)
x2

= 12 (x2)
2

D2f(x1, x2) =

[
12 (x1)

2 −4

−4 12 (x2)
2

]
This matrix is symmetric, this is because of Clairaut: fx1x2

= fx2x1

Case 1: (0, 0)

D2f(0, 0) =

[
0 −4
−4 0

]
= A

The correct analog of f ′′(c) > 0 has to do with eigenvalues!

Note: For a review of eigenvalues, check out the following video:

Video: Eigenvalues

Eigenvalues:

https://www.youtube.com/watch?v=H-NxPABQlxI
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∣∣A− λI
∣∣ = ∣∣∣∣−λ −4

−4 −λ

∣∣∣∣ = (−λ)2 − (−4)2 = λ2 − 16 = 0 ⇒ λ = ±4

The eigenvalues have mixed signs, both positive and negative

The True Second Derivative Test:

Suppose (a, b) is a CP of f , then:

(1) If the eigenvalues of D2f(a, b) are all positive, then f has
a local min at (a, b)

(2) If the eigenvalues are all negative, then f has a local max
at (a, b)

(3) If the eigenvalues have mixed sign, then f has a saddle
point at (a, b)

And if one eigenvalue is 0, the test is inconclusive

Here f has a saddle at (0, 0)

Case 2: (1, 1)

D2f(1, 1) =

[
12 −4
−4 12

]
= A

∣∣A− λI
∣∣ = ∣∣∣∣12− λ −4

−4 12− λ

∣∣∣∣ = (12− λ)2 − (−4)2 = (λ− 12)2 − 16 = 0

λ− 12 = ±4 ⇒ λ = 12 + 4 or 12− 4 ⇒ λ = 8 or 16

All the eigenvalues are positive, so f has a local min at (1, 1)
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Case 3: (−1,−1)

D2f(−1,−1) =

[
12 −4
−4 12

]
same matrix

f has a local min at (−1,−1)

Conclusion:

Saddle Point: f(0, 0) = 1

Local Min: f(1, 1) = 1 + 1− 4 + 1 = −1

Local Min: f(−1,−1) = 1 + 1− 4(−1)(−1) + 1 = −1

Note: All of this works in higher dimensions as well!

2. Convexity

Question: How to show that f is convex?

Recall: (1D) f is convex (concave up) if f ′′(x) > 0 for all x

Example 2:

Is the following function convex?

f(x1, x2) = (x1)
4 + (x2)

4 − 4 (x1) (x2) + 1

D2f(x1, x2) =

[
12 (x1)

2 −4

−4 12 (x2)
2

]
First Method:
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Definition:

IF D2f exists, then f is convex if for every (x1, x2), D
2f(x1, x2)

has only positive eigenvalues.

We’ve seen thatD2f(0, 0) has eigenvalues λ = ±4, so the answer isNO

That said, this method is not practical at all to check for convexity,
because the eigenvalues here depend on x1 and x2

Faster Method: This is better explained in 3 dimensions

Example 3:

Is the following function convex?

f(x1, x2, x3) = (x1)
2+2 (x2)

2+3 (x3)
2+2 (x1) (x2)+2 (x1) (x3)+3

D2f(x1, x2, x3) =

fx1x1
fx1x2

fx1x3

fx2x1
fx2x2

fx2x3

fx3x1
fx3x2

fx3x3

 =

2 2 2
2 4 0
2 0 6



Definition: Third Leading Principal Minor

Just the determinant of D2f

D3 =

∣∣∣∣∣∣
2 2 2
2 4 0
2 0 6

∣∣∣∣∣∣ = 8
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Definition: Second Leading Principal Minor

D3 but you delete the last row/column

D2 =

∣∣∣∣2 2
2 4

∣∣∣∣ = 4

Definition: First Leading Principal Minor

D2 but you delete the last row/column

D1 = det ([2]) = 2

Convexity test:

f is convex if and only if for all (x1, x2, x3), we haveD1, D2, D3 > 0

Since D1 = 2, D2 = 4, D3 = 8 > 0, we have that f is convex.

Note: In 2 dimensions, we only have D2 (determinant) and D1 (1× 1
sub-determinant). In the previous example, you can check that D2 =
144 (x1)

2 (x2)
2 − 16 is not always > 0, so f would not be convex.

Definition:

f is concave if −f is convex

Warning: This is NOT the same thing as checking D1, D2, D3 < 0
because

∣∣−A
∣∣ ̸= ∣∣A∣∣
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In fact, because
∣∣−A

∣∣ = (−1)n
∣∣A∣∣ the correct thing would be to check


(−1)3D3 >0

(−1)2D2 >0

(−1)1D1 >0

⇒


D3 < 0

D2 > 0

D1 < 0

In my opinion it’s easier to just calculate−f and check if that is convex.

Global Max/Min:

(1) If f is convex and (a, b) is a CP of f , then f has a global
min at (a, b)

(2) If f is concave and (a, b) is a CP of f , then f has a global
max at (a, b)

In our f(x1, x2, x3) example, can check that (0, 0, 0) is a critical point
of f . Since f is convex, it follows that f has a global min at (0, 0, 0)

Here are three more applications of NLP. Mathematically, they are
similar, but in practice they solve completely different problems.

3. Application 1: Clustering

Suppose you have a collection a1, a2, . . . , a100 of data points and a point
x, think a pinned location.
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Given x, consider the smallest (closed) ball B(x, r) centered at x that
goes through all the data points:
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Notice r depends on x. In fact, the closer to are to the points, the
smaller the radius:

Question: Where should you place x to get the smallest radius r?

We can express this as a NLP problem:

Notice y ∈ B(x, r) if and only if |y − x| ≤ r

So, in order for the data points ai to be in B(x, r) we need |ai − x| ≤ r

Therefore our minimization problem just becomes:

NLP Problem:

min r

subject to |ai − x| ≤ r for all i = 1, 2, · · · , 100
x ∈ Rn
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Explicit formula for r:

If you think about it, then r is just the biggest distance between x and
all the data points, that is

r = max {|a1 − x| , · · · , |a100 − x|}

By definition of max, we automatically have |ai − x| ≤ r for all i and
so our problem becomes:

Unconstrained NLP Problem:

min
x

max
i

{|a1 − x| , . . . , |a100 − x|}

subject to x ∈ Rn

This is useful in applications to see if there are clusters of points, when
r is small, or if the points spread out, when r is large

4. Application 2: Linear Separator

Suppose you have a collection b1, . . . , b50 of blue points and c1, . . . , c30
of red (crimson) points, say in 2 dimensions

Goal: Find a line that has all the blue points on one side, and all the
red points on the other side
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This line could not exist (if the points are not on one side), or there
could be many such lines, such as follows:
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We want to find a line that clearly separates the two. We can do so
with distances:

di = smallest distance between bi and line

ej = smallest distance between cj and line

Suppose our line as equation y = ax+ b

We want the points to be as far away from the line as possible, as long
as all the blue points are on one side of the line and the red ones are
on the other side, so our problem becomes:
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NLP Problem:

max
50∑
i=1

di +
30∑
j=1

ej

y > ax+ b for all blue points

y < ax+ b for all red points

a, b real

Can replace the sum by min {di, ej} so it becomes a max-min problem

Note: Here a and b appear in the formulas for di and ej, so it is a 2D
max problem.

This is useful because once you have the line, and get a new data point,
you can label that point as blue or red depending on which side of the
line it is on.

5. Application 3: Regression

Given a collection of data points x1, . . . , x100, find the line that best
fits the points
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It’s surprisingly the same problem, except instead of maximizing the
distance, requiring the points to be far from the line, we are minimizing
the distance, requiring the points to be close to the line.

di = smallest distance between xi and line

Suppose our line is y = ax+ b

Unconstrained NLP Problem:

min d1 + · · ·+ d100
subject to a, b real

Note: Can replace the sum with max di think minimizing the worst
possible error.

Here a and b appear in the formulas for di so it is in fact a 2D min
problem.
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