
LECTURE 24: GRADIENT DESCENT

Today: Another cool way of finding the local max/min of a function

What is wrong with our previous D2f method? Nothing, it’s just that
it requires you to

(1) Calculate second derivatives

(2) Find the critical points = lots of algebra

(3) Calculate determinants = computationally expensive

The methods below are fairly quick and only require first derivatives,
although they just give you an approximate answer.

1. Introduction

Let’s motivate this with an application

Date: Tuesday, December 6, 2022.
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Example 1: To the Moon!

Suppose you’re building a portfolio using two kinds of stocks:
GME (Gamestop) and AMC

x1 = number of GME shares

x2 = number of AMC shares

Each stock has a return and a risk, given by expected values and
variances respectively

Assume the expected return of GME is 20% and for AMC is 16%

Then a (deterministic) model for your wealth is

max f(x1, x2)

f(x1, x2) = 20x1 + 16x2 −
(
2 (x1)

2 + (x2)
2 + (x1 + x2)

2
)

Note: It’s possible to turn this into a probabilistic model, but this is
outside the scope of the course.

2. Motivation

1D Motivation: Given a 1D (differentiable) function f we have

f ′(x) = lim
h→0+

f(x+ h)− f(x)

h



LECTURE 24: GRADIENT DESCENT 3

If f ′(x) > 0 then this means that for small h > 0 we have

f(x+ h)− f(x)

h
≈ f ′(x) > 0

So for small h > 0 we get f(x+ h)− f(x) > 0 ⇒ f(x+ h) > f(x).

This means that f(x+ h) is a bigger value than f(x), and so f(x+ h)
is a better candidate for a max.

But then we can repeat the same thing with x+h instead of x and get
an even bigger value. Until when can we do that? Until f ′ = 0
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3. Method 1: Cyclic Ascent

Example 2:

Apply cyclic ascent to find an approximate local max of

f(x1, x2) = 20x1 + 16x2 −
(
2 (x1)

2 + (x2)
2 + (x1 + x2)

2
)
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Main Idea: Same idea, but we start with fx1
then do fx2

then do fx3

until we run out of variables. Then start again with fx1
, fx2

, and so on
and so forth. It’s called a cyclic method because we’re cycling through
the variables.

STEP 0: Start with a point, say (0, 0) (any point works)

Candidate for max: (0, 0)

(It makes sense in terms of our portfolio context, because you start out
with no shares before buying them)

Idea: Like the simplex method, start at (0, 0) and move in a direction

STEP 1: x1−direction

fx1
= 20− 4x1 − 2(x1 + x2) = 20− 6x1 − 2x2

Along our path, we have x2 = 0 and so

fx1
(x1, 0) = 20− 6x1 − 2(0) = 20− 6x1

And once again it’s the same idea: Increase x1 until fx1
= 0

fx1
= 0 ⇒ 20− 6x1 = 0 ⇒ x1 =

20

6
=

10

3

Candidate for max:
(
10
3 , 0

)
≈ (3.33, 0)

We have increased x1 as much as we could, and so we continue with x2

STEP 2: x2−direction

fx2
= 16− 2x2 − 2 (x1 + x2) = 16− 4x2 − 2x1
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In this case we have x1 =
10
3 and so we get

fx2

(
10

3
, x2

)
= 16− 4x2 − 2

(
10

3

)
=

48

3
− 20

3
− 4x2 =

28

3
− 4x2 = 0

x2 =
28

(3)(4)
=

7

3

Candidate for max:
(
10
3 ,

7
3

)
≈ (3.33, 2.33)

Note: If we had x3, we would continue with x3, but since we’ve ex-
hausted all our variables, we start again at x1

STEP 3: x1−direction

Start at x2 =
7
3 and change x1

fx1
= 20− 6x1 − 2x2

fx1

(
x1,

7

3

)
= 20− 6x1 − 2

(
7

3

)
=

46

3
− 6x1 = 0

x1 =
46

3(6)
=

23

9
≈ 2.56

Candidate for max:
(
23
9 ,

7
3

)
≈ (2.56, 2.33)

Notice this time x1 decreased instead of increased

STEP 4+ And then you continue:

Fix x1 =
23
9 and change x2, to get (2.56, 2.72)
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Then fix x2 = 2.72 and change x1, and so on

Question: When do you stop?

Answer: Whenever you want!

Notice in fact that the points are getting closer and closer to each
other, so you stop whenever you find an answer that is within your
desired threshold. For instance, if you want an answer correct to 1
decimal place, then you would continue until you get (2.4, 2.8)

This makes sense in context of the problem: What difference does it
really make if you buy 23.12 shares or 23.13 shares?

Note: While this method is faster than the second derivative one, it’s
not always super efficient.

Example: What if, instead of increasing x1 or x2 separately, we in-
crease (x1, x2) in the (1, 1) direction?

This leads us to. . .
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4. Review of Directional Derivatives

Example 3:

f(x1, x2) = 3x1x2 + 4 (x2)
2

Calculate the following:

(a) ∇f

(b) The directional derivative of f in the direction ⟨3, 4⟩

(c) The direction of the greatest rate of increase/decrease of
f at (1, 2)

(a) ∇f = ⟨fx1
, fx2

⟩ = ⟨3x2, 3x1 + 8x2⟩

(b) D⟨3,4⟩f = (∇f) · ⟨3, 4⟩ = ⟨3x2, 3x1 + 8x2⟩ · ⟨3, 4⟩
=3 (3x2) + 4 (3x1 + 8x2) = 12x1 + 41x2

Note: Some books require ⟨3, 4⟩ to be a unit vector, but we won’t
take that approach here.

(c) Largest increase is in the direction of the gradient, so

Answer: ∇f(1, 2) = ⟨3(2), 3(1) + 8(2)⟩ = ⟨6, 19⟩

And the largest decrease is in −⟨6, 19⟩ = ⟨−6,−19⟩
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Note: (c) follows because

Duf = ∇f · u = |∇f | |u| cos(θ)

Which is largest if θ = 0, that is if u points the same direction as ∇f ,
and smallest if θ = π, u points the opposite direction of ∇f

This tells us that, in order to maximize f , it’s best to move in the
direction of ∇f
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5. Method 2: Steepest Ascent

Quite fun, because you turn a max problem into another max problem!

Example 4:

Apply steepest ascent to

f(x1, x2) = 20x1 + 16x2 −
(
2 (x1)

2 + (x2)
2 + (x1 + x2)

2
)

STEP 0: Start at (0, 0)

STEP 1: Calculate ∇f(0, 0)

fx1
=20− 4x1 − 2 (x1 + x2)

fx2
=16− 2x2 − 2 (x1 + x2)

∇f(0, 0) = ⟨20, 16⟩

So from the above, to maximize f , it makes sense to start at (0, 0) and
move in the direction of ⟨20, 16⟩
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By how much should we move? Cannot apply the previous method
and increase until ∇f is zero because that’s unlikely to happen.

STEP 2: Solve a 1D max problem:

The line starting at (0, 0) and direction ⟨20, 16⟩ is parametrized as

⟨0, 0⟩+ t ⟨20, 16⟩ = ⟨20t, 16t⟩

f(20t, 16t) =20 (20t) + 16 (16t)−
(
2 (20t)2 + (16t)2 + (20t+ 16t)2

)
=656t− 2352t2 = g(t)
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Maximize this with respect to t

g′(t) = 656− 2352(2t) = 0 ⇒ t =
656

2(2352)
=

41

294
≈ 0.1395

And g′′(t) = −2(2352) < 0 so indeed a local max.

Candidate for max

This means you start at (0, 0) and move by (0.1395) ⟨20, 16⟩ and so

(0, 0) + (0.1395)(20, 16) = (2.79, 2.23)

Which is much closer to (2.4, 2.8) than our previous method

STEP 3: Start at (2.79, 2.23) and calculate ∇f(2.79, 2.23)

fx1
=20− 4x1 − 2 (x1 + x2)

fx2
=16− 2x2 − 2 (x1 + x2)

∇f(2.79, 2.23) = ⟨−1.2, 1.5⟩

Here the line is parametrized by

⟨2.79, 2.23⟩+ t ⟨−1.2, 1.5⟩ = ⟨2.79− 1.2t, 2.23 + 1.5t⟩

f(2.79− 1.2t, 2.23 + 1.5t) = −5.22t2 +−3.69t+ 45.7385 = g(t)
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g′(t) = −10.44t− 3.69 = 0 ⇒ t =
3.69

10.44
≈ 0.353
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g′′(t) = −10.44 < 0 so we indeed have a max.

Candidate for max

(2.79, 2.23) + (0.353)(−1.2, 1.5) = (2.37, 2.76)

Which is even closer to (2.4, 2.8)

Note: Technically, the two methods give you a local max, and it’s
possible in practice that your iterations get closer and closer to a min
that you don’t care about, like a marble being stuck in a pinball ma-
chine. In that case you choose a very large value of t, just so you can
leave the region that you’re stuck in, like shaking a pinball machine.

This officially ends our exploration of nonlinear programs! This is
really just the tip of the iceberg, there are several other methods that
prove to be useful as well, such as Lagrange Multipliers (maximizing a
function with a constraint) and Newton’s method (useful to find zeros
of functions, which is useful because critical points are literally zeros
of derivatives)
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