LECTURE 25: REVIEW

1. SIMPLEX METHOD

Example 1:		
	$\max z = 2x_1 + 3x_2$	
	subject to $-x_1 + x_2 \leq 3$	(1)
	$x_1 - 2x_2 \le 2$	2
	$3x_1 + 4x_2 \le 26$	3
	$x_1 \ge 0$	4
	$x_2 \ge 0$	5

Picture: (optional, see next page)

STEP 1: Start at (0,0)

Current Vertex: $\{(4), (5)\}$

Objective Value: z = 0

Because 3 > 2, increase x_2 , so hold (4) and release (5)

Date: Thursday, December 8, 2022.

Hitting times: Here $x_1 = 0$

$$\begin{array}{ll} (1) & -0+x_2=3 \Rightarrow x_2=3 \\ (2) & 0-2x_2=2 \Rightarrow x_2=-1 \times \\ (3) & 0+4x_2=26 \Rightarrow x_2=6.5 \end{array}$$

The smallest hitting time is $x_2 = 3$, so (1) is hit first

New Vertex:
$$\{(4), (1)\} = (0, 3)$$

Coordinates:

(4)
$$y_1 = x_1$$

(1) $-x_1 + x_2 \le 3 \Rightarrow 3 + x_1 - x_2 \ge 0 \Rightarrow y_2 = 3 + x_1 - x_2$

$$\begin{cases} y_1 = x_1 \\ y_2 = 3 + x_1 - x_2 \end{cases}$$

Change coordinates:

$$x_1 = y_1 x_2 = 3 + x_1 - y_2 = 3 + y_1 - y_2$$

Rewrite problem:

$$\max z = 2x_1 + 3x_2 = 2y_1 + 3(3 + y_1 - y_2) = 9 + 5y_1 - 3y_2$$
(1) $y_2 \ge 0$
(2) $y_1 - 2(3 + y_1 - y_2) \le 2 \Rightarrow -y_1 + 2y_2 - 6 \le 2 \Rightarrow -y_1 + 2y_2 \le 8$
(3) $3y_1 + 4(3 + y_1 - y_2) \le 26 \Rightarrow 7y_1 - 4y_2 + 12 \le 26 \Rightarrow 7y_1 - 4y_2 \le 14$
(4) $y_1 \ge 0$
(5) $3 + y_1 - y_2 \ge 0 \Rightarrow -y_1 + y_2 \le 3$

$$\max z = 9 + 5y_1 - 3y_2$$

subject to $y_2 \ge 0$ (1)
 $-y_1 + 2y_2 \le 8$ (2)
 $7y_1 - 4y_2 \le 14$ (3)
 $y_1 \ge 0$ (4)
 $-y_1 + y_2 \le 3$ (5)

STEP 2: (0,3)

Current Vertex: $\{(1), (4)\}$

Objective Value: z = 9

Because of 5, we increase y_1 , so hold (1) and release (4)

Hitting times: Here $y_2 = 0$

(2)
$$-y_1 + 2(0) = 8 \Rightarrow y_1 = -8 \times$$

(3) $7y_1 - 0 = 14 \Rightarrow y_1 = 2$
(5) $-y_1 + 0 = 3 \Rightarrow y_1 = -3 \times$

The smallest hitting time is $y_1 = 2$, so (3) is hit first

New Vertex: $\{(1), (3)\} = (2, 0)$ in y-coordinates

Coordinates:

$$\begin{cases} (3) z_1 = 14 - 7y_1 + 4y_2 \\ (1) z_2 = y_2 \end{cases}$$

Change coordinates:

$$y_2 = z_2$$

$$y_1 = -\frac{1}{7}z_1 + \frac{4}{7}y_2 + 2 = -\frac{1}{7}z_1 + \frac{4}{7}z_2 + 2$$

Rewrite problem:

$$z = 9 + 5y_1 - 3y_2 = 9 + 5\left(-\frac{1}{7}z_1 + \frac{4}{7}z_2 + 2\right) - 3z_2 = 19 - \frac{5}{7}z_1 - \frac{1}{7}z_2$$

Since both coefficients are negative, we **STOP**

STEP 3: Answer

Optimal z-value: z = 19

Optimal Vertex:

In y-coordinates the vertex is (2,0) and so $y_1 = 2$ and $y_2 = 0$ and so in x-coordinates this becomes

$$x_1 = y_1 = 2$$

$$x_2 = 3 + y_1 - y_2 = 3 + 2 - 0 = 5$$

And so the optimal vertex is (2,5)

2. BRANCH-AND-BOUND

$$\max z = 4x_1 + 5x_2$$

subject to $x_1 + 4x_2 \le 10$
 $3x_1 - 4x_2 \le 6$
 $x_1, x_2 \ge 0$
 $x_1, x_2 \in \mathbb{Z}$

Picture: Optional, but really useful

STEP 1: Solve the (relaxed) LP problem

Vertices:

(0, 0)

 x_1 intercept of $3x_1 - 4x_2 = 6$ which is $3x_1 - 0 = 6$ so $x_1 = 2 \Rightarrow (2, 0)$

 x_2 intercept of $x_1 + 4x_2 = 10$ which is $0 + 4x_2 = 10$ so $x_2 = \frac{5}{2} \Rightarrow (0, \frac{5}{2})$

Intersection of the two lines

$$\begin{cases} x_1 + 4x_2 = 10\\ 3x_1 - 4x_2 = 6 \end{cases}$$

Adding the two equations we get $4x_1 = 16$ so $x_1 = 4$ and so $4x_2 = 10 - x_1 = 10 - 4 = 6$ and so $x_2 = \frac{3}{2} \Rightarrow \left(4, \frac{3}{2}\right)$

Compare:

- (0,0) with z = 0
- (2,0) with z = 4(2) + 5(0) = 8

 $(0, \frac{5}{2})$ with $z = 4(0) + 5(\frac{5}{2}) = \frac{25}{2} = 12.5$

 $(4, \frac{3}{2})$ with $z = 4(4) + 5(\frac{3}{2}) = 16 + \frac{15}{2} = 16 + 7.5 = 23.5$

The optimal relaxed LP vertex is $(4, \frac{3}{2})$ with z = 23.5

STEP 2: Since $x_2 = \frac{3}{2}$, we need to split into two cases and solve the relaxed LP in each case

Case 1: $x_2 \le 1$

Vertices:

- (0, 0) with z = 0
- (2,0) with z = 8
- (0,1) with z = 4(0) + 5(1) = 5

Intersection of $3x_1 - 4x_2 = 6$ with $x_2 = 1$ which gives $3x_1 - 4(1) = 6$ so $3x_1 = 10$ so $x_1 = \frac{10}{3} \Rightarrow \left(\frac{10}{3}, 1\right)$ with $z = 4\left(\frac{10}{3}\right) + 5(1) = \frac{65}{3} \approx 18.33$

This last one gives us the biggest z value, therefore

The optimal relaxed LP vertex is $\left(\frac{10}{3}, 1\right)$ with $z = \frac{65}{3}$

Since $x_1 = \frac{10}{3}$, need to split into two sub-cases, see picture below.

Sub-Case 1(a): $x_1 \leq 3$

Vertices

- (0,0) with z = 0
- (2,0) with z = 8
- (0,1) with z = 5
- (3,1) with z = 4(3) + 5(1) = 17

Intersection of $3x_1 - 4x_2 = 6$ with $x_1 = 3$ which is $3(3) - 4x_2 = 6$ so $-4x_2 = -3$ so $x_2 = \frac{3}{4} \Rightarrow (3, \frac{3}{4})$ with $z = 4(3) + 5(\frac{3}{4}) = \frac{63}{4} = 15.75$

The optimal relaxed LP vertex is (3, 1) with z = 17

Sub-Case 1(b): $x_1 \ge 4$

This is outside of our feasible region, because if $x_1 \ge 4$ and $x_2 \le 1$

$$3x_1 - 4x_2 \ge 3(4) - 4(1) = 8 > 6$$

So the second constraint isn't satisfied.

Case 2: $x_2 \ge 2$

Vertices

 $\left(0,\frac{5}{2}\right)$ with $z = \frac{25}{2}$

(0,2) with z = 4(0) + 5(2) = 10

Intersection of $x_2 = 2$ and $x_1 + 4x_2 = 10$ which is $x_1 + 4(2) = 10$ so $x_1 = 2 \Rightarrow (2, 2)$ with z = 4(2) + 5(2) = 18

The optimal relaxed vertex is (2,2) with z = 18

STEP 3: We therefore get 2 candidates:

(3,1) with z = 17 and (2,2) with z = 18, therefore:

Answer: (2, 2) with z = 18

3. Concavity

Example 3:

For which values of c is $f(x_1, x_2)$ convex? concave?

$$f(x_1, x_2) = e^{3(x_1) + c(x_2)^2}$$

STEP 1: Calculate $D^2 f$

$$f_{x_1} = 3e^{3(x_1) + c(x_2)^2} = 3f$$

$$f_{x_2} = (2cx_2) e^{3(x_1) + c(x_2)^2} = (2cx_2) f$$

$$\begin{aligned} f_{x_1x_1} &= 3 \, (3f) = 9f \\ f_{x_1x_2} &= (3f)_{x_2} = 3 \, (2cx_2) \, f = (6cx_2) \, f \\ f_{x_2x_1} &= (2cx_2f)_{x_1} = (2cx_2) \, (3f) = (6cx_2) \, f \checkmark \\ f_{x_2x_2} &= (2cx_2f)_{x_2} = 2cf + (2cx_2) \, f_{x_2} = 2cf + (2cx_2) \, 2cx_2f \end{aligned}$$

$$D^{2}f(x_{1}, x_{2}) = \begin{bmatrix} 9f & (6cx_{2}) f \\ (6cx_{2}) f & (2c + 4c^{2} (x_{2})^{2}) f \end{bmatrix}$$

STEP 2: Convexity: Want $D_2 > 0$ and $D_1 > 0$

$$D_{2} = \begin{vmatrix} 9f & (6cx_{2}) f \\ (6cx_{2}) f & (2c + 4c^{2} (x_{2})^{2}) f \end{vmatrix}$$

= $9f \left(2c + 4c^{2} (x_{2})^{2} \right) f - (6cx_{2}) f (6cx_{2}) f$
= $\left[18c + 36c^{2} (x_{2})^{2} - 36c^{2} (x_{2})^{2} \right] f^{2}$
= $18cf^{2}$

Since f > 0 we have $D_2 > 0$ if and only if c > 0

$$D_1 = \det[9f] = 9f$$

Which is always positive

Conclusion: f is convex whenever c > 0

STEP 3: Concavity

Either re-do the above but with -f instead of f

Or just check that $(-1)^2 D_2 > 0$ and $(-1)D_1 > 0$, that is $D_2 > 0$ and $D_1 < 0$.

 $D_2 = 18cf^2 > 0$ if and only if c > 0 but $D_1 = 9f$ which is never negative!

Conclusion: f is never concave

Example 4:

Show that if f is convex, then

$$f\left(\frac{x+y}{2}\right) \le \left(\frac{1}{2}\right)f(x) + \left(\frac{1}{2}\right)f(y)$$

So for convex f we have f of the midpoint (average) of x and y is less than or equal to the midpoint (average) of f(x) and f(y)

$$f\left(\frac{x+y}{2}\right) = f\left(\left(\frac{1}{2}\right)x + \left(\frac{1}{2}\right)y\right) \le \left(\frac{1}{2}\right)f(x) + \left(\frac{1}{2}\right)f(y)$$

In the middle step we used the definition of convexity with $\lambda = \frac{1}{2}$, which implies $1 - \lambda = 1 - \frac{1}{2} = \frac{1}{2}$