
APMA 1210 Practice Final Solutions

December 2022

1 Simplex method

We begin by rewriting the LP in a way that allows us to label the constraints:

Maximize: z = 3x1 + x2 + 3x3

Subject to: 2x1 + x2 + x3 ≤ 2 (1)

x1 + 2x2 + 3x3 ≤ 5 (2)

2x1 + 2x2 + x3 ≤ 6 (3)

x1 ≥ 0 (4)

x2 ≥ 0 (5)

x3 ≥ 0 (6)

We can now quickly check the origin for feasibility. The point (x1, x2, x3) =
(0, 0, 0) is in the feasible region, and in particular it is a corner point, because
there are 3 variables and 3 tight constraints (4), (5), and (6). So this will be
the starting point.

Current vertex: {(4), (5), (6)}, (x1, x2, x3) = (0, 0, 0)

Objective value: z = 3(0) + 0 + 3(0) = 0, this is non-optimal because
increasing any of the variables will increase the objective value. Increasing ei-
ther x1 or x3 would provide the largest increase, since they have equally large
coefficients in the objective function, so we can choose either variable. We will
proceed with x1 here.

Move: Increasing the selected variable from x1 = 0 to x1 = 1 makes con-
straint (1) tight, and constraint (4) has been released. We have now stepped to
the point (1,0,0) corresponding to the set of tight constraints {(1), (5), (6)}.

Coordinates: We choose y1 = 2− 2x1 − x2 − x3, y2 = x2, y3 = x3 based on
the set of tight constraints at this point.

1

Rewrite LP: Solving back from the new coordinate system, we compute
x2 = y2, x3 = y3 and this allows us to find x1 = 1

2 (2− y1 − y2 − y3). Substitute
these into the LP to find the new system:

Maximize: z = 3− 3

2
y1 −

1

2
y2 +

3

2
y3

Subject to: y1 ≥ 0 (1)

− y1 + 3y2 + 5y3 ≤ 8 (2)

− y1 + y2 ≤ 4 (3)

y1 + y2 + y3 ≤ 2 (4)

y2 ≥ 0 (5)

y3 ≥ 0 (6)

Current vertex: {(1), (5), (6)}, (y1, y2, y3) = (0, 0, 0)

Objective value: z = 3− 3
2 (0)−

1
2 (0)+

3
2 (0) = 3, this is non-optimal since

increasing y3 would increase the objective value. We will proceed by increasing
y3.

Move: Increasing this variable from y3 = 0 to y3 = 8
5 releases constraint

(6) and tightens constraint (2). We have now stepped to the point (y1, y2, y3) =
(0, 0, 8

5), corresponding to the set of tight constraints {(1), (2), (5)}.

Coordinates: We choose w1 = y1 and w2 = y2 corresponding to the tight
constraints (1) and (5), and then we also choose w3 = 8 + y1 − 3y2 − 5y3 ac-
cording to constraint (2).

Rewrite LP: Solving back gives us y1 = w1 and y2 = w2, allowing us to
compute y3 = 1

5 (8 + w1 − 3w2 − w3). Using these substitutions, we construct
the new system:

Maximize: z =
27

5
− 6

5
w1 −

7

5
w2 −

3

10
w3

Subject to: w1 ≥ 0 (1)

w2 ≥ 0 (2)

− w1 + w2 ≤ 4 (3)

6w1 + 2w2 − w3 ≤ 2 (4)

w2 ≥ 0 (5)

− w1 + 3w2 + w3 ≤ 8 (6)

Current vertex: {(1), (2), (5)}, (w1, w2, w3) = (0, 0, 0)

2

Objective value: z = 27
5 − 6

5 (0)−
7
5 (0)−

3
10 (0) =

27
5 , this is optimal since

the coefficients of all variables are negative.

Optimal vertex: We can now translate our current vertex, at which the
optimal value was achieved, back to the original coordinate system. We already
know that (w1, w2, w3) = (0, 0, 0) corresponds to (y1, y2, y3) = (0, 0, 8

5) since
this is the vertex from which we found the new coordinates. Recall that the
translation from x-coordinates to y-coordinates used x2 = y2, x3 = y3; thus we
have x2 = 0 and x3 = 8

5 . Then x1 = 1
2 (2− y1− y2− y3) =

1
2 (

2
5) =

1
5 , so we have

that the optimal vertex is (x1, x2, x3) = (15 , 0,
8
5).

3

2 Dynamic programming

Let w be the remaining weight on the plane, f(w) is the max value of the goods
the plane can carry with the remaining weight w. From the table we have
∀a, b ∈+, f(a+ b) ≥ f(a) + f(b). So for the state transition, we have

f(w) = max
a,b≤w,
a,b∈+

{f(a) + f(b), V (w)} (1)

where V (w) = Vi if ∃i ∈+ s.t. w = Wi, otherwise V (w) = 0.
Now we can compute from f(1) to f(13),

f(1) = 0.5

f(2) = 1

f(3) = max{f(1) + f(2), V4} = max{1.5, 2} = 2

f(4) = max{f(1) + f(3), f(2) + f(2), V3} = max{2.5, 2, 3} = 3

f(5) = max{f(1) + f(4), f(2) + f(3), V2} = max{3.5, 3, 4} = 4

f(6) = max{f(1) + f(5), f(2) + f(4), f(3) + f(3)} = max{4.5, 4, 4} = 4.5

f(7) = max{f(1) + f(6), f(2) + f(5), f(3) + f(4), V1} = max{5, 5, 5, 9} = 9

f(8) = max{f(1) + f(7), f(2) + f(6), f(3) + f(5), f(4) + f(4)} = max{9.5, · · · } = 9.5

f(9) = max{f(1) + f(8), f(2) + f(7), · · · } = max{10, 10, · · · } = 10

f(10) = max{f(1) + f(9), f(2) + f(8), f(3) + f(7), · · · } = max{10.5, 10.5, 11, · · · } = 11

f(11) = max{f(1) + f(10), f(2) + f(9), f(3) + f(8), f(4) + f(7), · · · } = max{11.5, 11, 11.5, 12, · · · } = 12

f(12) = max{f(1) + f(11), f(2) + f(10), f(3) + f(9), f(4) + f(8), f(5) + f(7), · · · }
= max{12.5, 12, 12, 12.5, 13, · · · } = 13

f(13) = max{f(1) + f(12), f(2) + f(10), f(3) + f(10), f(4) + f(9), f(5) + f(8), f(6) + f(7)}
= max{13.5, 13, 13, 13, 13.5, 13.5} = 13.5

And the maximum value is 13.5, and from the process, we have

13 = 1 + 12 = 1 + 5 + 7

13 = 5 + 8 = 5 + 1 + 7

13 = 6 + 7 = 1 + 5 + 7

So the plane should load the product 1, 2, and 5 for 1 unit respectively.

4

3 Max flow/min cut

We begin by choosing the s − t path s → A → C → t with weight 12, limited
by the maximum capacity on (A,C). This path and its corresponding residual
graph are shown below; on the flow graph, the numbers correspond to flow
on each edge. On the residual graph, the green arrows are the reversed edges
yielded by the flow, and numbers are color-coded for the edges corresponding
to them.

Figure 1: First s− t path and residual

We next choose the path s → B → D → C → t with weight 7, since this is
the option that adds the most to our existing flow. Augmenting the flow with
this path yields the following flow network and corresponding residual graph.

5

Figure 2: Augmented graph for second s− t path, with residual graph

Finally we choose the path s → B → D → t with weight 4. Notice that
after augmenting our flow network with this path, the residual graph contains
no path from s to t, meaning that this is the maximum possible flow (a total of
23 units of flow). This solution is not unique; there are several ways to run 23
units of flow through this network. However, in all viable solutions, the edges
(A,C), (D,C), (D, t) will be at capacity.

6

Figure 3: Augmented graph for third s− t path, with final residual graph

Having established that the maximum flow is 23, it follows that the minimum-
weight cut is also 23. The corresponding cut is shown below, separating the
network into the vertex sets {s,A,B,D}, {C, t}. Note that although the edge
(C,B) crosses this cut, it is passing from the set containing t to the set contain-
ing s, which is the wrong direction. The only edges whose weights are counted
for the cut are those that pass from the set containing s to the set containing
s; in this case, these edges are (A,C), (D,C), (D, t), whose weights sum to 23
and which are precisely the edges which are at capacity in any maximum flow.

7

Figure 4: Minimum-weight cut indicated by dashed black line

8

4 Network simplex method

In the network below, the edges drawn in orange form a spanning tree of the
graph. All edges are labelled with their costs, with blue corresponding to edges
outside the initial spanning tree and orange corresponding to edges belonging
to the initial spanning tree. Starting from this tree, use the network simplex
algorithm to find the minimum cost spanning tree.

Figure 5: Network for Simplex question

We begin by determining the weights needed on each edge of the original
spanning tree. In the figure below, on each of the orange edges, the first number
corresponds to the cost and the second number corresponds to the weight to
balance the inputs and outputs for each vertex. Note that the dashed blue edges
are not in the spanning tree and automatically receive a weight of 0 (unwritten).

Figure 6: Initial tree with edge weights

We next compute the reduced cost for each edge that is not in the spanning
tree. Note that these computations do NOT include edge weights; they are
solely based on the cost per unit for each edge.

9

Edge Same direction Opposite direction Reduced cost

(B,A) (B,A), (A,C) (D,C), (B,D) 1 + 2 - 1 - 3 = -1
(B,F) (B,F) (E,F), (D,E), (B,D) 6 - 2 - 4 - 3 = -3
(E,G) (E,G), (D,E) (C,G), (D,C) 7 + 4 - 5 - 1 = 5
(G,H) (G,H), (B,D), (D,C), (C,G) (F,H), (B,F) 9 + 3 + 1 + 5 - 8 - 2 = 8

We choose to add edge (B,F) because its reduced cost is the most negative.
The smallest edge weight in its corresponding cycle is on (E,F) with weight 10,
so we give (B,F) weight 10 and adjust accordingly to get the following, where
the new spanning tree and its costs and edge weights are shown in orange.

Figure 7: Second spanning tree with edge weights

We now compute the reduced costs for this network:

Edge Same direction Opposite direction Reduced cost

(B,A) (B,A), (A,C) (D,C), (B,D) 1 + 2 - 1 - 3 = -1
(E,F) (E,F), (B,D), (D,E) (B,F) 2 + 3 + 4 - 6 = 3
(E,G) (E,G), (D,E) (C,G), (D,C) 7 + 4 - 5 - 1 = 5
(G,H) (G,H), (D,C), (C,G) (F,H), (E,F), (D,E) 9 + 1 + 5 - 8 - 2 - 4 = 1

There is only one edge, (B,A), with a negative reduced cost, so we will add
it to our spanning tree. The lowest-weight edge in the opposite direction in its
corresponding cycle is (D,C) with weight 10, so we add (B,A) with weight 10
and adjust the other edges in the cycle accordingly to result in the following
network.

10

Figure 8: Third spanning tree with edge weights

Evaluating the reduced costs on this updated spanning tree yields the fol-
lowing results:

Edge Same direction Opposite direction Reduced cost

(D,C) (D,C), (B,D) (A,C), (B,A) 1 + 3 - 1 - 2 = 1
(E,F) (E,F), (B,D), (D,E) (B,F) 2 + 3 + 4 - 6 = 3
(E,G) (E,G), (B,D), (D,E) (C,G), (A,C), (B,A) 7 + 3 + 4 - 5 - 2 - 1 = 6
(G,H) (G,H), (B,A), (A,C), (C,G) (F,H), (B,F) 9 + 1 + 2 + 5 - 8 - 6 = 3

All reduced costs for the edges outside this tree are positive, so this third
tree is the minimum-cost spanning tree.

11

5 Integer programming

Figure 9: LP relaxation of program

Here is the graph for the LP relaxation. The optimal solution for the LP is
(4217 ,

90
17). So we can branch into x1 ≤ 2 or x1 ≥ 3.

For x1 ≤ 2, solving the LP relaxation gives optimal solution (2, 14
3). Then we

further branch it into x2 ≤ 4 as x2 ≥ 5 is not in the feasible region of LP
relaxation. Solving this LP gives the optimal solution (2, 4).
For x1 ≥ 3, solving the LP relaxation gives optimal solution (3, 9

2). Then we
further branch it into x2 ≤ 4 as x2 ≥ 5 is not in the feasible region of LP
relaxation. Solving this LP gives the optimal solution (103 , 4). Branch again, we
have x1 ≤ 3 or x1 ≥ 3, which gives (3, 4) and (4, 3) respectively. Hence there are
three potential optimal solutions: (2, 4), (3, 4), and (4, 3). The corresponding
values are 22, 23, and 19. So the optimal solution is (3, 4) with value 23.

12

6 Nonlinear programming

Assume the quantity of product A and B are q1 and q2. The cost for producing
their prototype C is 1

2 (q1 + q2)
2. Then we can formulate the NLP as

max z = 10q1 + 16q2 − q1 −
1

2
q22 −

1

2
(q1 + q2)

2

s.t. q1 + q2 ≤ 20

q1, q2 ≥ 0

The Jacobian of z is

J =

(
zq1
zq2

)
=

(
−q1 − q2 + 9
−q1 − 2q2 + 16

)
And the Hessian of z is

H =

(
∂2z
∂q21

∂2z
∂q1∂q2

∂2z
∂q2∂q1

∂2z
∂q22

)
=

(
−1 −1
−1 −2

)

And the eigenvalue of H are −3±
√
5

2 < 0. So the Hessian is negative definite,
which means z takes maximum when J = 0. Solving this we have q1 = 2, q2 = 7.
And q1 + q2 = 9 < 20, so the optimal solution is in the feasible region.

13

7 Convexity

Note that by the definition of h(x), we have f(x) ≤ h(x) and g(x) ≤ h(x)
for any x. In particular, we also have that if there is some quantity c such that
f(x) ≤ c and g(x) ≤ c, it must also be true that h(x) ≤ c. Consider any two
points x, y and some λ ∈ [0, 1]. We want to show that h(λx+(1−λ)y) ≤ λh(x)+
(1−λ)h(y); by the previous statements, it suffices to show that f(λx+(1−λ)y)
and g(λx+ (1− λ)y) are smaller than this quantity.

Since f(x) and g(x) are convex, we know:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

But by the definition of h(x) we know that f(x) ≤ h(x) and f(y) ≤ h(y);
moreover, from this same definition we also know g(x) ≤ h(x) and g(y) ≤ h(y).
Therefore we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λh(x) + (1− λ)h(y)

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y) ≤ λh(x) + (1− λ)h(y)

Thus both f(λx + (1 − λ)y) and g(λx + (1 − λ)y) are lesser or equal to
λh(x)+ (1− λ)h(y), and since h(x) = max{f(x), g(x)}, it follows by our earlier
reasoning that h(λx+(1−λ)y) ≤ λh(x)+(1−λ)h(y). Therefore h(x) is convex.

14

