ASU Practice Midterm 2

Problem 1: Use the Chain Rule to find $\frac{\partial z}{\partial s}$ if

$$
\left\{\begin{array}{l}
z=e^{x y} \\
x=7 s+8 t \\
y=s t^{4}
\end{array}\right.
$$

Problem 2: Find the maximum rate of change for $f(x, y)=x^{3} y^{2}$ at the point $(3,2)$

Problem 3: Reverse the order of integration for the double integral

$$
\int_{0}^{1} \int_{y}^{1} f(x, y) d x d y
$$

Problem 4: By changing to polar coordinates, evaluate the following integral, where D is the disk $x^{2}+y^{2} \leq 4$

$$
\iint_{D}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d A
$$

Problem 5: Find the differential of the function $z=3 y \sqrt{x}$
Problem 6: Find the domain of the function $f(x, y)=\sqrt{x}+\sqrt{y}$
Problem 7: Find the directional derivative of the function $f(x, y)=$ $2 x^{2} y^{3}+3 x$ at the point $(1,-2)$ in the direction of the vector $\mathbf{v}=5 \mathbf{i}+12 \mathbf{j}$

Problem 8: Find an equation of the tangent plane to the surface $x y z+y^{2}+z^{3}=6$ at the point $(1,2,3)$

Problem 9: Find all critical points for the function $f(x, y)=x^{3}-$ $12 x y+8 y^{3}$ and classify them as either a local minimum, local maximum, or saddle point

Problem 10: Compute the following double integral, where $D=$ $[0,1] \times[-1,2]$

$$
\iint_{D} 2 x+3 y^{2} d y d x
$$

