ASU Practice Midterm 3

Multiple Choice:

Problem 1: Evaluate $\int \int \int_E z e^{2x+y} dx dy dz$ where *E* is the box $0 \le x \le 2, 0 \le y \le 3, 0 \le z \le 5$

Problem 2: Let *E* be the solid region bounded by the sphere of radius 4 in the first octant. Set up the integral for $\int \int \int_E \sqrt{x^2 + y^2 + z^2} dV$ in spherical coordinates, but do not evaluate it.

Problem 3: What are the cylindrical coordinates of the point whose rectangular coordinates are (x, y, z) = (4, 3, 0)?

Problem 4: Find the gradient vector field for $f(x, y) = y^2 + e^{2x}$

Problem 5: Suppose F(x, y, z) is a gradient field with $F = \nabla f$, S is a level surface of f and C is a curve on S. What is the value of $\int_C F \cdot dr$?

Problem 6/7: Evaluate $\int_C y dx$ where C is the circle $x^2 + y^2 = 25$ with positive orientation

Free Response:

Problem 1: Let the curve C be the line segment from (2, -1, 3) to (5, 1, 5) and let $F(x, y, z) = \langle -y, z, x \rangle$ be a force field. Calculate the work done by F to move a particle along the curve C

Problem 2: Use Green's Theorem to evaluate $\int_C \left(e^{x^2} - y\right) dx + (2x + \sin^2(y)) dy$ where C is the positively oriented circle $x^2 + y^2 = 36$

Problem 3: Let $F(x, y, z) = (2xyz^3) \mathbf{i} + (x^2z^3 + \cos(y)) \mathbf{j} + (3x^2yz^2) \mathbf{k}$

- (a) Find a potential function for F
- (b) Evaluate $\int_C F \cdot dr$ where C is any curve from (2, 0, 5) to (3, 2, 3)