ASU Practice Midterm 3

Multiple Choice:

Problem 1: Evaluate $\iiint_{E} z e^{2 x+y} d x d y d z$ where E is the box $0 \leq$ $x \leq 2,0 \leq y \leq 3,0 \leq z \leq 5$

Problem 2: Let E be the solid region bounded by the sphere of radius 4 in the first octant. Set up the integral for $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$ in spherical coordinates, but do not evaluate it.

Problem 3: What are the cylindrical coordinates of the point whose rectangular coordinates are $(x, y, z)=(4,3,0)$?

Problem 4: Find the gradient vector field for $f(x, y)=y^{2}+e^{2 x}$

Problem 5: Suppose $F(x, y, z)$ is a gradient field with $F=\nabla f, S$ is a level surface of f and C is a curve on S. What is the value of $\int_{C} F \cdot d r$?

Problem 6/7: Evaluate $\int_{C} y d x$ where C is the circle $x^{2}+y^{2}=25$ with positive orientation

Free Response:

Problem 1: Let the curve C be the line segment from $(2,-1,3)$ to $(5,1,5)$ and let $F(x, y, z)=\langle-y, z, x\rangle$ be a force field. Calculate the work done by F to move a particle along the curve C

Problem 2: Use Green's Theorem to evaluate $\int_{C}\left(e^{x^{2}}-y\right) d x+\left(2 x+\sin ^{2}(y)\right) d y$ where C is the positively oriented circle $x^{2}+y^{2}=36$

Problem 3: Let $F(x, y, z)=\left(2 x y z^{3}\right) \mathbf{i}+\left(x^{2} z^{3}+\cos (y)\right) \mathbf{j}+\left(3 x^{2} y z^{2}\right) \mathbf{k}$
(a) Find a potential function for F
(b) Evaluate $\int_{C} F \cdot d r$ where C is any curve from $(2,0,5)$ to $(3,2,3)$

