1. (10 points) Let S be a nonempty and bounded subset of \mathbb{R} .

Show that there is a sequence (s_n) in S that converges to $\sup(S)$.

2. (10 points) Suppose (s_n) , (t_n) , and (u_n) are sequences in \mathbb{R} with $s_n \to s, t_n \to t$, and $u_n \to u$. Show using the **definition** of a limit that

$$s_n + t_n + u_n \to s + t + u$$

Note: Make sure your final answer ends with ϵ

 $\mathbf{2}$

- 3. (10 = 7 + 3 points) Let (s_n) and (t_n) be bounded sequences in \mathbb{R} .
 - (a) Show using the **definition** of limit (and without using lim sup) that

$$\liminf_{n \to \infty} \left(s_n + t_n \right) \ge \left(\liminf_{n \to \infty} s_n \right) + \left(\liminf_{n \to \infty} t_n \right)$$

Hint: First show

$$\inf \{s_n + t_n \mid n > N\} \ge \inf \{s_n \mid n > N\} + \inf \{t_n \mid n > N\}$$

(b) Give an example of bounded sequences (s_n) and (t_n) with

$$\liminf_{n \to \infty} (s_n + t_n) \neq \left(\liminf_{n \to \infty} s_n\right) + \left(\liminf_{n \to \infty} t_n\right)$$

Briefly justify your answer

4. (10 points) Show that $(\mathbb{R}^2, d_{\infty})$ is complete, where

4

$$d_{\infty}((x_1, x_2), (y_1, y_2)) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

Note: You're allowed to use that \mathbb{R} is complete (with its usual absolute value)

5. (10 = 2 + 8 points)

(a) (this is quick) Use a convergence test to show that the following series converges:

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

(b) Suppose (s_n) is a sequence such that, for all $n \ge 1$, we have

$$|s_{n+1} - s_n| \le \frac{1}{n^2}$$

Show that (s_n) converges

Hint: Show that (s_n) is Cauchy. For this, use the Cauchy criterion applied to the series in (a)

6. (10 points) Let $f : [a, b] \to \mathbb{R}$ be continuous and suppose there is a sequence (s_n) in [a, b] such that $0 \le f(s_n) \le \frac{1}{n}$ for all nShow that there is some $x \in [a, b]$ with f(x) = 0

Careful: We don't know whether (s_n) converges!

 $\mathbf{6}$

7. (10 points) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function with the following property:

There are C > 0 and $\alpha > 0$ such that for all $x, y \in \mathbb{R}$, we have

$$|f(x) - f(y)| \le C |x - y|^{\alpha}$$

Show that f is uniformly continuous on $\mathbb R$

8. (10 points) Let (S, d) be a compact metric space and suppose $f: S \to \mathbb{R}$ satisfies the following property:

For all $x \in S$, there are M > 0 and r > 0 (depending on x) such that, for all $y \in B(x, r)$, $|f(y)| \le M$

Show directly, using the definition of compactness, that there is M > 0 (not depending on x) such that for all $x \in S$, $|f(x)| \leq M$

Careful: Do **NOT** assume that f is continuous.