1. (10 points) Let S be a nonempty and bounded subset of \mathbb{R}.

Show that there is a sequence $\left(s_{n}\right)$ in S that converges to $\sup (S)$.
2. (10 points) Suppose $\left(s_{n}\right),\left(t_{n}\right)$, and $\left(u_{n}\right)$ are sequences in \mathbb{R} with $s_{n} \rightarrow s, t_{n} \rightarrow t$, and $u_{n} \rightarrow u$. Show using the definition of a limit that

$$
s_{n}+t_{n}+u_{n} \rightarrow s+t+u
$$

Note: Make sure your final answer ends with ϵ
3. $(10=7+3$ points $)$ Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be bounded sequences in \mathbb{R}.
(a) Show using the definition of liminf (and without using limsup) that

$$
\liminf _{n \rightarrow \infty}\left(s_{n}+t_{n}\right) \geq\left(\liminf _{n \rightarrow \infty} s_{n}\right)+\left(\liminf _{n \rightarrow \infty} t_{n}\right)
$$

Hint: First show

$$
\inf \left\{s_{n}+t_{n} \mid n>N\right\} \geq \inf \left\{s_{n} \mid n>N\right\}+\inf \left\{t_{n} \mid n>N\right\}
$$

(b) Give an example of bounded sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$ with

$$
\liminf _{n \rightarrow \infty}\left(s_{n}+t_{n}\right) \neq\left(\liminf _{n \rightarrow \infty} s_{n}\right)+\left(\liminf _{n \rightarrow \infty} t_{n}\right)
$$

Briefly justify your answer
4. (10 points) Show that $\left(\mathbb{R}^{2}, d_{\infty}\right)$ is complete, where

$$
d_{\infty}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}
$$

Note: You're allowed to use that \mathbb{R} is complete (with its usual absolute value)
5. $(10=2+8$ points $)$
(a) (this is quick) Use a convergence test to show that the following series converges:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

(b) Suppose $\left(s_{n}\right)$ is a sequence such that, for all $n \geq 1$, we have

$$
\left|s_{n+1}-s_{n}\right| \leq \frac{1}{n^{2}}
$$

Show that $\left(s_{n}\right)$ converges
Hint: Show that $\left(s_{n}\right)$ is Cauchy. For this, use the Cauchy criterion applied to the series in (a)
6. (10 points) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and suppose there is a sequence $\left(s_{n}\right)$ in $[a, b]$ such that $0 \leq f\left(s_{n}\right) \leq \frac{1}{n}$ for all n Show that there is some $x \in[a, b]$ with $f(x)=0$

Careful: We don't know whether $\left(s_{n}\right)$ converges!
7. (10 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function with the following property:

There are $C>0$ and $\alpha>0$ such that for all $x, y \in \mathbb{R}$, we have

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

Show that f is uniformly continuous on \mathbb{R}
8. (10 points) Let (S, d) be a compact metric space and suppose $f: S \rightarrow \mathbb{R}$ satisfies the following property:

For all $x \in S$, there are $M>0$ and $r>0$ (depending on $x)$ such that, for all $y \in B(x, r),|f(y)| \leq M$

Show directly, using the definition of compactness, that there is $M>0$ (not depending on x) such that for all $x \in S,|f(x)| \leq M$

Careful: Do NOT assume that f is continuous.

