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1. (10 points) Prove one of the following statements (NOT both)

□ FTC 2: If f is differentiable on [a, b], then∫ b

a

f ′(x)dx = f(b)− f(a)

□ If f is continuous on [a, b], then f is integrable on [a, b]
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2. (10 = 2 + 6 + 2 points)

(a) Define: limn→∞ sn = s

(b) Suppose (sn) is a bounded sequence and (tn) a sequence
such that limn→∞ tn = ∞, show that limn→∞

sn
tn

= 0

(c) Give an example where (b) is false if (sn) is not bounded
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3. (10 = 2 + 4 + 4 points) Let (sn) be a bounded sequence of real
numbers.

(a) Define: lim infn→∞ sn

(b) Use the definition of lim inf to show that

lim inf
n→∞

sn = −
(
lim sup
n→∞

−sn

)
You may use any facts about inf and sup learned in lecture

(c) Prove the result in (b), but this time with subsequences.

Hint: First consider a subsequence going to lim infn→∞ sn
Then consider a subsequence going to lim supn→∞−sn.
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4. (10 = 2 + 2 + 6 points)

(a) Define: (sn) is Cauchy

(b) State the Cauchy criterion for convergence of a series
∑∞

k=1 ak

(c) Suppose (sn) is a sequence such that for all n

|sn − sn−1| ≤
(
1

2

)n

Show that (sn) converges

Hint: Show that (sn) is Cauchy. For this, use the Cauchy
criterion applied to a certain series.
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5. (10 = 2 + 8 points)

(a) Define: limx→a f(x) = L

(b) Use the ϵ− δ definition of a limit to show that

lim
x→2

2x3 + 3 = 19

It might be useful to use a3 − b3 = (a− b)(a2 + ab+ b2)
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6. (10 = 5 + 5 points) f : R → R be a function with the following
property:

There is C > 0 such that for every x and y, we have

|f(x)− f(y)| ≤ C |x− y|2

(a) Show f is uniformly continuous on R

(b) Show that if f is differentiable on R, then f must be con-
stant
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7. (10 = 2 + 8 points)

(a) State the Cauchy criterion for integrability of a function f
on [a, b]

(b) Use the Cauchy criterion to show that f(x) = x2 is inte-
grable on [0, 1]

Hint: Let P be the evenly spaced calculus partition of
width 1

n where n is to be chosen later. At some point, you

may need to use 1 + 2 + · · ·+ n = n(n+1)
2


