Part I: Multiple Choice. Select the correct answer for each problem. Make a table of all answers at the top of the first page of your test. There are 7 problems, each worth 6 points, for a total of 42 possible points.

1. The arc length of the curve C parameterized as $\mathbf{r}(t) = \langle 2t+1, 3t-4, 5t \rangle, \ 0 \le t \le 3$ is

A. 3

B. $3\sqrt{17}$

- C. $3\sqrt{38}$
- D. 30

E. none of the above

2. If $w = x^2 + 3y^2$, $x = se^{2t}$ and $y = st^2$, which of the expressions represents $\frac{\partial w}{\partial t}$?

A.
$$\frac{\partial w}{\partial t} = (2x)(2e^{2t}) + (6y)(t^2)$$

B.
$$\frac{\partial w}{\partial t} = (2x)(2se^{2t}) + (6y)(st^2)$$

C.
$$\frac{\partial w}{\partial t} = (2x)(se^{2t}) + (6y)(2st)$$

D.
$$\frac{\partial w}{\partial t} = (2x)(2se^{2t}) + (6y)(2st)$$

E. none of the above

3. Find the directional derivative of $f(x, y, z) = x^2yz - 3xz + 4xy$ at the point (1, 0, 1) and in the direction of $\mathbf{v} = \langle 3, 4, 0 \rangle$.

A. $11/\sqrt{43}$

- B. $\langle -3, 5, -3 \rangle$
- C. $\sqrt{43}$
- D. 11/5

E. none of the above

4. Let *E* be the region bounded by the two hemispheres $z = \sqrt{1 - x^2 - y^2}$ and $z = \sqrt{9 - x^2 - y^2}$ and the *xy* plane. The triple integral $\iiint_E \sqrt{x^2 + y^2 + z^2} dxdydz$ in spherical coordiantes is

A.
$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{1}^{3} \rho^{3} \sin \phi \, d\rho \, d\phi \, d\theta$$

B.
$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{1}^{3} \rho^{3} \sin \phi \, d\rho \, d\phi \, d\theta$$

C.
$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{1}^{9} \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

D.
$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{1}^{3} \rho \, d\rho \, d\phi \, d\theta$$

E. none of the above

5. Find the curl of $\mathbf{F}(x, y, z) = \langle 5x - 3y, xyz^2, x^2 - z^2 \rangle$ at the point (1, 2, 1).

- A. $\langle -4, -2, 5 \rangle$ B. $\langle 5, 1, -2 \rangle$ C. $\langle -4, 2, -5 \rangle$
- D. 4
- E. none of the above

6. Find the volume of the solid region that lies under the surface z = xy and over the region in the xy plane bounded by the curves y = 2x and $y = x^2$.

- A. 8/3
- B. 4/3
- C. 32/3
- D. 8
- E. none of the above

7. Find the surface area of the parametric surface $\mathbf{r}(u,v) = \langle 3u - v, 2v, u + v \rangle, \ 0 \le u \le 2, \ 0 \le v \le 4.$

- A. $8\sqrt{60}$ B. $8\sqrt{56}$ C. 8 D. 56
- E. none of the above

Part II: Free Response. Solve each problem, showing all work clearly and thoroughly. Draw a box around your final answers and include units where applicable. There are 5 problems worth a total of 58 points.

1. [12 points] To the Moon!!! A toy rocket with a mass of 3 kg is launched from the ground at t = 0 and crashes on the ground (z = 0) some time later. During the flight, its position is $\mathbf{r}(t) = \langle t^4 + 3t^2, t^2 + 2t, 6t - 3t^2 \rangle$ where t is in seconds and distances are in meters.

- a) [6 pts] Find the speed the rocket was traveling when it crashed. (exact answer please)
- b) [6 pts] Find the force vector **F** that was acting on the rocket when it launched.

2. [12 points] An IKEA box KALLAX has dimensions x, y and z in such a way that 2x + y + z = 6. What are the dimensions of the box that produce the largest possible volume? Don't forget to check that you actually have a local maximum.

3. [14 points] Evaluate the surface integral $\iint_S (xy + z) \, dS$ where S is the part of the plane z = x + 3y that lies above the rectangle $[0, 1] \times [0, 2]$. No picture needed. Please use parametrizations, don't use the "direct formula"

4. [14 points] Find the flux of the vector field $\mathbf{F}(x, y, z) = \langle z, x, y \rangle$ through the surface S parametrized by $\mathbf{r}(u, v) = \langle 2u, 3v, u + v \rangle$, $0 \le u \le 1$, $0 \le v \le 2$. Assume the surface has upward orientation. No picture needed.

5. [6 points] [Juicy Peyam Special] Suppose a donut S has a parametrization in the form $r(\theta, \alpha)$ (with θ and α both between 0 and 2π) in such a way that the normal vector is

 $a(b + a\cos(\alpha)) \langle \cos(\alpha)\cos(\theta), \cos(\alpha)\sin(\theta), \sin(\alpha) \rangle$

where 0 < a < b are fixed constants. Find the surface area of S. No picture needed.