MAT 267 Spring 2021, Final Exam, Instructor: Peyam Tabrizian

Part I: Multiple Choice. Select the correct answer for each problem. Make a table of all answers at the top of the first page of your test. There are 7 problems, each worth 6 points, for a total of 42 possible points.

1. The arc length of the curve C parameterized as $\mathbf{r}(t)=\langle 2 t+1,3 t-4,5 t\rangle, 0 \leq t \leq 3$ is
A. 3
B. $3 \sqrt{17}$
C. $3 \sqrt{38}$
D. 30
E. none of the above
2. If $w=x^{2}+3 y^{2}, x=s e^{2 t}$ and $y=s t^{2}$, which of the expressions represents $\frac{\partial w}{\partial t}$?
A. $\frac{\partial w}{\partial t}=(2 x)\left(2 e^{2 t}\right)+(6 y)\left(t^{2}\right)$
B. $\frac{\partial w}{\partial t}=(2 x)\left(2 s e^{2 t}\right)+(6 y)\left(s t^{2}\right)$
C. $\frac{\partial w}{\partial t}=(2 x)\left(s e^{2 t}\right)+(6 y)(2 s t)$
D. $\frac{\partial w}{\partial t}=(2 x)\left(2 s e^{2 t}\right)+(6 y)(2 s t)$
E. none of the above
3. Find the directional derivative of
$f(x, y, z)=x^{2} y z-3 x z+4 x y$ at the point $(1,0,1)$ and in the direction of $\mathbf{v}=\langle 3,4,0\rangle$.
A. $11 / \sqrt{43}$
B. $\langle-3,5,-3\rangle$
C. $\sqrt{43}$
D. $11 / 5$
E. none of the above
4. Let E be the region bounded by the two hemispheres $z=\sqrt{1-x^{2}-y^{2}}$ and $z=\sqrt{9-x^{2}-y^{2}}$ and the $x y$ plane. The triple integral $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z$ in spherical coordiantes is
A. $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{3} \rho^{3} \sin \phi d \rho d \phi d \theta$
B. $\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{1}^{3} \rho^{3} \sin \phi d \rho d \phi d \theta$
C. $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{9} \rho^{2} \sin \phi d \rho d \phi d \theta$
D. $\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{1}^{3} \rho d \rho d \phi d \theta$
E. none of the above
B. $8 \sqrt{56}$
C. 8
D. 56
E. none of the above
5. Find the curl of $\mathbf{F}(x, y, z)=\left\langle 5 x-3 y, x y z^{2}, x^{2}-z^{2}\right\rangle$ at the point $(1,2,1)$.
A. $\langle-4,-2,5\rangle$
B. $\langle 5,1,-2\rangle$
C. $\langle-4,2,-5\rangle$
D. 4
E. none of the above
6. Find the volume of the solid region that lies under the surface $z=x y$ and over the region in the $x y$ plane bounded by the curves $y=2 x$ and $y=x^{2}$.
A. $8 / 3$
B. $4 / 3$
C. $32 / 3$
D. 8
E. none of the above
7. Find the surface area of the parametric surface $\mathbf{r}(u, v)=\langle 3 u-v, 2 v, u+v\rangle, 0 \leq u \leq 2,0 \leq v \leq 4$.
A. $8 \sqrt{60}$

Part II: Free Response. Solve each problem, showing all work clearly and thoroughly. Draw a box around your final answers and include units where applicable. There are 5 problems worth a total of 58 points.

1. [12 points] To the Moon!!! A toy rocket with a mass of 3 kg is launched from the ground at $t=0$ and crashes on the ground ($z=0$) some time later. During the flight, its position is $\mathbf{r}(t)=\left\langle t^{4}+3 t^{2}, t^{2}+2 t, 6 t-3 t^{2}\right\rangle$ where t is in seconds and distances are in meters.
a) $[6 \mathrm{pts}]$ Find the speed the rocket was traveling when it crashed. (exact answer please)
b) $[6 \mathrm{pts}]$ Find the force vector \mathbf{F} that was acting on the rocket when it launched.
2. [12 points] An IKEA box KALLAX has dimensions x, y and z in such a way that $2 x+y+z=6$. What are the dimensions of the box that produce the largest possible volume? Don't forget to check that you actually have a local maximum.
3. [14 points] Evaluate the surface integral $\iint_{S}(x y+z) d S$ where S is the part of the plane $z=x+3 y$ that lies above the rectangle $[0,1] \times[0,2]$. No picture needed. Please use parametrizations, don't use the "direct formula"
4. [14 points] Find the flux of the vector field $\mathbf{F}(x, y, z)=\langle z, x, y\rangle$ through the surface S parametrized by $\mathbf{r}(u, v)=\langle 2 u, 3 v, u+v\rangle, 0 \leq u \leq 1,0 \leq v \leq 2$. Assume the surface has upward orientation. No picture needed.
5. [6 points] [Juicy Peyam Special] Suppose a donut S has a parametrization in the form $r(\theta, \alpha)$ (with θ and α both between 0 and 2π) in such a way that the normal vector is

$$
a(b+a \cos (\alpha))\langle\cos (\alpha) \cos (\theta), \cos (\alpha) \sin (\theta), \sin (\alpha)\rangle
$$

where $0<a<b$ are fixed constants. Find the surface area of S. No picture needed.

