MATH 251 - FINAL EXAM

Name	
Student ID	
Section	501
Signature	

Instructions: Welcome to your Final Exam! You have 120 minutes to take this exam, for a total of 100 points. No books, notes, calculators, or cellphones are allowed. Remember that you are not only graded on your final answer, but also on your work. Please put your answers in the boxes provided. If you need to continue your work on the back, please check the box "Work on Back," or else your work will be discarded.

Academic Honesty Statement: With the signature above, I certify that the exam was taken by the person named and without any form of assistance and acknowledge that any form of cheating (no matter how small) results in an automatic F in the course, and will be further subject to disciplinary consequences, pursuant to the Aggie Honor Code.

[^0]1. (10 points) Calculate $\int_{C} F \cdot d r$ where $F=\frac{4}{3}\left\langle-y^{3}, x^{3}\right\rangle$ and C is the upper half circle $x^{2}+y^{2} \leq 9$ with $y \geq 0$, oriented clockwise. Simplify your answer.
Answer $\quad \square$
2. (10 points) Use parametrizations to find $\int_{C} F \cdot d r$, where $F=$ $\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ and C is the circle centered at $(0,0)$ and radius 2 , oriented counterclockwise
Answer
3. (10 points) Find $\int_{C} F \cdot d r$, where $F=\left\langle 2 x e^{-y}, 2 y-x^{2} e^{-y}\right\rangle$ and C is the line segment from $(1,0)$ to $(3,5)$

Work on back
4. (15 points) Find $\iint_{S} 3 \sqrt{x+2 y+2 z} d S$, where S is the surface parametrized by:

$$
\left\{\begin{aligned}
r(u, v) & =\left\langle u^{2}, u v, \frac{1}{2} v^{2}\right\rangle \\
0 & \leq u \leq 1 \\
0 & \leq v \leq 2
\end{aligned}\right.
$$

Answer \quad,
5. $(15=10+5$ points $)$
(a) Find a such that $F=\operatorname{curl}(G)$, where $F=\langle 0,0,-3 x\rangle$ and $G=\left\langle x y, a x^{2}, z\right\rangle$
(b) Use (a) to calculate $\iint_{S} F \cdot d \mathbf{S}$ where $F=\langle 0,0,-3 x\rangle$ and S is the paraboloid $z=25-x^{2}-y^{2}$ above the plane $z=9$, oriented upwards
\square

Work on back
6. (15 points) Find $\iint_{S} F \cdot d \mathbf{S}$, where $F=\left\langle 3 x,-y+e^{x\left(z^{2}\right)}, \sin (x y)\right\rangle$ and S is the boundary of the region E in the first octant bounded by $y=1-x^{2}$ and $y+z=2$, oriented outwards.
Answer \mid
7. $(15=5+10$ points $)$ Let $F=\langle x, \sin (\sin (y)), \cos (\cos (z))\rangle$
(a) Show F is conservative
(b) Calculate $\int_{C} F \cdot d r$, where C is the curve parametrized by $r(t)=\langle t, \sin (t), \sin (t)\rangle, 0 \leq t \leq \pi$.

Hint: Since $\int_{C} F \cdot d r$ is independent of path, can you think of a simpler path connecting the start and endpoints?

Answer for (a)	(show work)
Answer for (b)	

8. $(10=5+5$ points $)$ The two parts of this problem are independent of each other
(a) Calculate $\iint_{S} \operatorname{curl}(F) \cdot d \mathbf{S}$ where $F=\left\langle x^{3}, y^{4}, z^{5}\right\rangle$ and S is the sphere centered at $(0,0,0)$ and radius 3
(b) Is there a vector field G such that $F=\operatorname{curl} G$ where $F=$ $\langle z, y, x\rangle$? Why or why not?

Answer for (a)
Answer for (b)

[^0]: Date: Monday, December 13, 2021.

