Let $M = \sup(S)$. Then, for every $n, M - \frac{1}{n} < M = \sup(S)$, and therefore, by definition of sup, there is $s_n \in S$ such that $s_n > M - \frac{1}{n}$. But since M is an upper bound for S, we also have $s_n \leq M$, and therefore $M - \frac{1}{n} < s_n \leq M$

Since $M - \frac{1}{n} \to M$ and $M \to M$, by the squeeze theorem, we have $s_n \to M = \sup(S)$

Let $\epsilon > 0$ be given.

Since $s_n \to s$, there is N_1 such that if $n > N_1$, then $|s_n - s| < \frac{\epsilon}{3}$ Since $t_n \to t$, there is N_2 such that if $n > N_2$, then $|t_n - t| < \frac{\epsilon}{3}$ Since $u_n \to u$, there is N_3 such that if $n > N_3$, then $|u_n - u| < \frac{\epsilon}{3}$ Let $N = \max\{N_1, N_2, N_3\}$, then if n > N, we get:

$$|s_{n} + t_{n} + u_{n} - (s + t + u)| = |s_{n} - s + t_{n} - t + u_{n} - u|$$

$$\leq |s_{n} - s| + |t_{n} - t| + |u_{n} - u|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon \checkmark$$

Hence $s_n + t_n + u_n \rightarrow s + t + u$

-	_	_	
			L

(a) Let N be given, then if n > N, we have

$$s_n \ge \inf \left\{ s_n \mid n > N \right\}$$

And

$$t_n \ge \inf \left\{ t_n \mid n > N \right\}$$

And therefore

$$s_n + t_n \ge \inf \{s_n \mid n > N\} + \inf \{t_n \mid n > N\}$$

Since n > N was arbitrary, taking the inf over all n > N on the left hand side, we get

 $\inf \{s_n + t_n \mid n > N\} \ge \inf \{s_n \mid n > N\} + \inf \{t_n \mid n > N\}$

And therefore

$$\liminf_{n \to \infty} (s_n + t_n) = \lim_{N \to \infty} \inf \{s_n + t_n \mid n > N\}$$

$$\stackrel{(a)}{\geq} \lim_{N \to \infty} \inf \{s_n \mid n > N\} + \inf \{t_n \mid n > N\}$$

$$= \lim_{N \to \infty} \inf \{s_n \mid n > N\} + \lim_{N \to \infty} \inf \{t_n \mid n > N\}$$

$$= \left(\liminf_{n \to \infty} s_n\right) + \left(\liminf_{n \to \infty} t_n\right)$$

(b) Let
$$s_n = (-1)^n$$
 and $t_n = -s_n = (-1)^{n+1}$

Then

$$\left(\liminf_{n \to \infty} s_n\right) + \left(\liminf_{n \to \infty} t_n\right) = -1 + (-1) = -2$$

But

$$\liminf_{n \to \infty} s_n + t_n = \liminf_{n \to \infty} 0 = 0 \neq -2$$

4. Let $(x^{(n)}) = (x_1^{(n)}, x_2^{(n)})$ be a Cauchy sequence in \mathbb{R}^2

Claim:
$$x_1^{(n)}$$
 and $x_2^{(n)}$ are Cauchy in \mathbb{R}

Proof: Let $\epsilon > 0$ be given, then there is N such that if m, n > N, then $d_{\infty}(x^{(m)}, x^{(n)}) < \epsilon$, that is

$$\max\left\{ \left| x_{1}^{(m)} - x_{1}^{(n)} \right|, \left| x_{2}^{(m)} - x_{2}^{(n)} \right| \right\} < \epsilon$$

With that same N, if m, n > N, then

$$\left|x_{1}^{(m)} - x_{1}^{(n)}\right| \le \max\left\{\left|x_{1}^{(m)} - x_{1}^{(n)}\right|, \left|x_{2}^{(m)} - x_{2}^{(n)}\right|\right\} < \epsilon \checkmark$$

And similarly $\left|x_{2}^{(m)}, x_{2}^{(n)}\right| < \epsilon$.

Since $x_1^{(n)}$ is Cauchy and \mathbb{R} is complete, $x_1^{(n)} \to x_1$ for some $x_1 \in \mathbb{R}$, and similarly $x_2^{(n)} \to x_2$ for some $x_2 \in \mathbb{R}$. Let $x =: (x_1, x_2)$

Claim: $x^{(n)} \rightarrow x$

Let $\epsilon > 0$ be given. Then, since $x_1^{(n)} \to x_1$, there is N_1 such that if $n > N_1$, then $\left| x_1^{(n)} - x_1 \right| < \epsilon$, and similarly there is N_2 such that if $n > N_2$, then $\left| x_2^{(n)} - x_2 \right| < \epsilon$.

Let $N = \max \{N_1, N_2\}$, then if n > N, we have

$$d_{\infty}(x^{(n)}, x) = \max\left\{ \left| x_1^{(n)} - x_1 \right|, \left| x_2^{(n)} - x_2 \right| \right\} < \max\left\{ \epsilon, \epsilon \right\} = \epsilon \checkmark$$

And therefore $x^{(n)} \to x$

5. (a) Let $f(x) = \frac{1}{x^2}$, then f is ≥ 0 and decreasing and

$$\int_{1}^{\infty} f(x)dx = \int_{1}^{\infty} \frac{1}{x^2}dx = \left[-\frac{1}{x}\right]_{1}^{\infty} = 0 + 1 = 1 < \infty$$

Therefore by the Integral Test, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges

(b) Let $\epsilon > 0$ be given. Then since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, it satisfies the Cauchy criterion, and hence there is N such that if $n \ge m > N$, then

$$\left|\sum_{k=m}^{n} \frac{1}{k^2}\right| < \epsilon$$

But then, with the same N, if m, n > N, WLOG, n > m, and therefore

$$\begin{aligned} |s_m - s_n| &= |s_m - s_{m+1} + s_{m+1} - s_{m+2} + \dots + s_{n-1} - s_n| \\ &\leq |s_m - s_{m+1}| + |s_{m+1} - s_{m+2}| + \dots + |s_{n-1} - s_n| \\ &\leq \frac{1}{m^2} + \frac{1}{(m+1)^2} + \dots + \frac{1}{(n-1)^2} \\ &= \sum_{k=m}^{n-1} \frac{1}{k^2} \\ &< \sum_{k=m}^n \frac{1}{k^2} \\ &< \epsilon \checkmark \end{aligned}$$

Hence (s_n) is Cauchy, and since \mathbb{R} is complete, (s_n) converges

BOLZANO-WEIERSTRAß TIME!!!

Since (s_n) is a sequence in [a, b], (s_n) is bounded, and therefore, by the Bolzano-Weierstraß Theorem, (s_n) has a convergent subsequence (s_{n_k}) that converges to some $x \in [a, b]$.

Since $s_{n_k} \to x$ and f is continuous, $f(s_{n_k}) \to f(x)$.

But, on the other hand, since $0 \leq f(s_n) \leq \frac{1}{n}$, we have $0 \leq f(s_{n_k}) \leq \frac{1}{n_k}$, and $\frac{1}{n_k} \to 0$, by the squeeze theorem, we have $f(s_{n_k}) \to 0$.

Combining $f(s_{n_k}) \to f(x)$ and $f(s_{n_k}) \to 0$, we get f(x) = 0 \Box

8

STEP 1: Scratchwork:

$$|f(x) - f(y)| \le C |x - y|^{\alpha} < \epsilon \Rightarrow |x - y|^{\alpha} < \frac{\epsilon}{C} \Rightarrow |x - y| < \left(\frac{\epsilon}{C}\right)^{\frac{1}{\alpha}}$$

STEP 2: Actual Proof:

Let $\epsilon > 0$ be given, let $\delta = \left(\frac{\epsilon}{C}\right)^{\frac{1}{\alpha}}$, then if $x, y \in \mathbb{R}$ with $|x - y| < \delta$, then

$$|f(x) - f(y)| \le C |x - y|^{\alpha} < C \left[\left(\frac{\epsilon}{C}\right)^{\frac{1}{\alpha}} \right]^{\alpha} = C \left(\frac{\epsilon}{C}\right) = \epsilon \checkmark$$

Therefore f is uniformly continuous on $\mathbb R$

By assumption, for all $x \in S$, there are M = M(x) > 0 and r = r(x) > 0 such that $|f(y)| \le M(x)$ for all $y \in B(x, r(x))$.

Now consider the following family of sets

$$\mathcal{U} = \{ B(x, r(x)) \mid x \in S \}$$

Each B(x, r(x)) is open (by definition) and each $x \in S$ is in B(x, r(x)), hence \mathcal{U} is an open cover of S.

But since S is compact, \mathcal{U} has a finite sub-cover

$$\mathcal{V} = \{B(x_1, r(x_1)), \dots, B(x_N, r(x_N))\}$$

Let $M = \max \{ M(x_1), \dots, M(x_N) \}$ (which is independent of x)

Then for all $x \in S$, since \mathcal{V} covers S, we have $x \in B(x_n, r(x_n))$ for some n, and therefore, by definition

$$|f(x)| \le M(x_n) \le M \Rightarrow |f(x)| \le M \checkmark \quad \Box$$