
1.

Let M = sup(S). Then, for every n, M − 1
n < M = sup(S),

and therefore, by definition of sup, there is sn ∈ S such that
sn > M − 1

n . But since M is an upper bound for S, we also

have sn ≤M , and therefore M − 1
n < sn ≤M

Since M − 1
n → M and M → M , by the squeeze theorem, we

have sn →M = sup(S) �
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2.

Let ε > 0 be given.

Since sn → s, there is N1 such that if n > N1, then |sn − s| < ε
3

Since tn → t, there is N2 such that if n > N2, then |tn − t| < ε
3

Since un → u, there is N3 such that if n > N3, then |un − u| < ε
3

Let N = max {N1, N2, N3}, then if n > N , we get:

|sn + tn + un − (s+ t+ u)| = |sn − s+ tn − t+ un − u|
≤ |sn − s|+ |tn − t|+ |un − u|

<
ε

3
+
ε

3
+
ε

3
=εX

Hence sn + tn + un → s+ t+ u �
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3.

(a) Let N be given, then if n > N , we have

sn ≥ inf {sn | n > N}

And

tn ≥ inf {tn | n > N}

And therefore

sn + tn ≥ inf {sn | n > N}+ inf {tn | n > N}

Since n > N was arbitrary, taking the inf over all n > N
on the left hand side, we get

inf {sn + tn | n > N} ≥ inf {sn | n > N}+ inf {tn | n > N}

And therefore

lim inf
n→∞

(sn + tn) = lim
N→∞

inf {sn + tn | n > N}
(a)

≥ lim
N→∞

inf {sn | n > N}+ inf {tn | n > N}

= lim
N→∞

inf {sn | n > N}+ lim
N→∞

inf {tn | n > N}

=
(

lim inf
n→∞

sn

)
+
(

lim inf
n→∞

tn

)
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(b) Let sn = (−1)n and tn = −sn = (−1)n+1

Then

(
lim inf
n→∞

sn

)
+
(

lim inf
n→∞

tn

)
= −1 + (−1) = −2

But

lim inf
n→∞

sn + tn = lim inf
n→∞

0 = 0 6= −2
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4. Let (x(n)) = (x
(n)
1 , x

(n)
2 ) be a Cauchy sequence in R2

Claim: x
(n)
1 and x

(n)
2 are Cauchy in R

Proof: Let ε > 0 be given, then there is N such that if m,n >
N , then d∞(x(m), x(n)) < ε, that is

max
{∣∣∣x(m)

1 − x(n)1

∣∣∣ , ∣∣∣x(m)
2 − x(n)2

∣∣∣} < ε

With that same N , if m,n > N , then∣∣∣x(m)
1 − x(n)1

∣∣∣ ≤ max
{∣∣∣x(m)

1 − x(n)1

∣∣∣ , ∣∣∣x(m)
2 − x(n)2

∣∣∣} < εX

And similarly
∣∣∣x(m)

2 , x
(n)
2

∣∣∣ < ε. �

Since x
(n)
1 is Cauchy and R is complete, x

(n)
1 → x1 for some x1 ∈

R, and similarly x
(n)
2 → x2 for some x2 ∈ R. Let x =: (x1, x2)

Claim: x(n) → x

Let ε > 0 be given. Then, since x
(n)
1 → x1, there is N1 such that

if n > N1, then
∣∣∣x(n)1 − x1

∣∣∣ < ε, and similarly there is N2 such

that if n > N2, then
∣∣∣x(n)2 − x2

∣∣∣ < ε.

Let N = max {N1, N2}, then if n > N , we have

d∞(x(n), x) = max
{∣∣∣x(n)1 − x1

∣∣∣ , ∣∣∣x(n)2 − x2
∣∣∣} < max {ε, ε} = εX

And therefore x(n) → x �
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5. (a) Let f(x) = 1
x2 , then f is ≥ 0 and decreasing and

∫ ∞
1

f(x)dx =

∫ ∞
1

1

x2
dx =

[
−1

x

]∞
1

= 0 + 1 = 1 <∞

Therefore by the Integral Test,
∑∞

n=1
1
n2 converges

(b) Let ε > 0 be given. Then since
∑∞

n=1
1
n2 converges, it sat-

isfies the Cauchy criterion, and hence there is N such that
if n ≥ m > N , then∣∣∣∣∣

n∑
k=m

1

k2

∣∣∣∣∣ < ε

But then, with the same N , if m,n > N , WLOG, n > m,
and therefore

|sm − sn| = |sm − sm+1 + sm+1 − sm+2 + · · ·+ sn−1 − sn|
≤ |sm − sm+1|+ |sm+1 − sm+2|+ · · ·+ |sn−1 − sn|

≤ 1

m2
+

1

(m+ 1)2
+ · · ·+ 1

(n− 1)2

=
n−1∑
k=m

1

k2

<
n∑

k=m

1

k2

<εX

Hence (sn) is Cauchy, and since R is complete, (sn) con-
verges �
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6.

BOLZANO-WEIERSTRAß TIME!!!

Since (sn) is a sequence in [a, b], (sn) is bounded, and therefore,
by the Bolzano-Weierstraß Theorem, (sn) has a convergent sub-
sequence (snk) that converges to some x ∈ [a, b].

Since snk → x and f is continuous, f(snk)→ f(x).

But, on the other hand, since 0 ≤ f(sn) ≤ 1
n , we have 0 ≤

f(snk) ≤ 1
nk

, and 1
nk
→ 0, by the squeeze theorem, we have

f(snk)→ 0.

Combining f(snk)→ f(x) and f(snk)→ 0, we get f(x) = 0 �
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7.

STEP 1: Scratchwork:

|f(x)− f(y)| ≤ C |x− y|α < ε⇒ |x− y|α < ε

C
⇒ |x− y| <

( ε
C

) 1
α

STEP 2: Actual Proof:

Let ε > 0 be given, let δ =
(
ε
C

) 1
α , then if x, y ∈ R with |x− y| <

δ, then

|f(x)− f(y)| ≤ C |x− y|α < C

[( ε
C

) 1
α

]α
= C

( ε
C

)
= εX

Therefore f is uniformly continuous on R �
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8.

By assumption, for all x ∈ S, there are M = M(x) > 0 and
r = r(x) > 0 such that |f(y)| ≤M(x) for all y ∈ B(x, r(x)).

Now consider the following family of sets

U = {B(x, r(x)) | x ∈ S}

Each B(x, r(x)) is open (by definition) and each x ∈ S is in
B(x, r(x)), hence U is an open cover of S.

But since S is compact, U has a finite sub-cover

V = {B(x1, r(x1)), . . . , B(xN , r(xN))}

Let M = max {M(x1), . . .M(xN)} (which is independent of x)

Then for all x ∈ S, since V covers S, we have x ∈ B(xn, r(xn))
for some n, and therefore, by definition

|f(x)| ≤M(xn) ≤M ⇒ |f(x)| ≤MX �


