MATH 409 - FINAL EXAM - SOLUTIONS

1. Option 1: Let $P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ be any partition of $[a, b]$

Then by the Mean Value Theorem, on each sub-piece $\left[t_{k-1}, t_{k}\right]$, there is x_{k} such that

$$
f^{\prime}\left(x_{k}\right)=\frac{f\left(t_{k}\right)-f\left(t_{k-1}\right)}{t_{k}-t_{k-1}} \Rightarrow f^{\prime}\left(x_{k}\right)\left(t_{k}-t_{k-1}\right)=f\left(t_{k}\right)-f\left(t_{k-1}\right)
$$

But with that choice of x_{k}, the Riemann sum $R\left(f^{\prime}, P\right)$ becomes:

$$
\begin{aligned}
\sum_{k=1}^{n} f^{\prime}\left(x_{k}\right)\left(t_{k}-t_{k-1}\right) & =\sum_{k=1}^{n} f\left(t_{k}\right)-f\left(t_{k-1}\right) \\
& =f\left(t_{1}\right)-f\left(t_{0}\right)+f\left(t_{2}\right)-f\left(t_{1}\right)+\cdots+f\left(t_{n}\right)-f\left(t_{n-1}\right) \\
& =f\left(t_{n}\right)-f\left(t_{0}\right) \\
& =f(b)-f(a)
\end{aligned}
$$

Since this is true for every partition, it follows that $\int_{a}^{b} f^{\prime}(x) d x=$ $f(b)-f(a)$

[^0]
Option 2: Let $\epsilon>0$ be given

Since f is continuous on $[a, b], f$ is uniformly continuous on $[a, b]$. Therefore there is $\delta>0$ such that for every x, y in $[a, b]$, if $|x-y|<\delta$ then $|f(x)-f(y)|<\frac{\epsilon}{b-a}$

For this δ, let $P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}$ be any partition with $\operatorname{mesh}(P)<\delta$

Then on each sub-piece, since f is continuous, by the Extreme Value Theorem, $M\left(f,\left[t_{k-1}, t_{k}\right]\right)=f\left(x_{k}\right)$ and $m\left(f,\left[t_{k-1}, t_{k}\right]\right)=$ $f\left(y_{k}\right)$ for some x_{k} and y_{k}. And since $\left|x_{k}-y_{k}\right|<t_{k}-t_{k-1}<\delta$, we have $f\left(x_{k}\right)-f\left(y_{k}\right)<\frac{\epsilon}{b-a}$ and so

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{k=1}^{n}\left(M\left(f,\left[t_{k-1}, t_{k}\right]\right)-m\left(f,\left[t_{k-1}, t_{k}\right]\right)\right)\left(t_{k}-t_{k-1}\right) \\
& =\sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(y_{k}\right)\right)\left(t_{k}-t_{k-1}\right) \\
& \leq \sum_{k=1}^{n} \frac{\epsilon}{b-a}\left(t_{k}-t_{k-1}\right) \\
& =\frac{\epsilon}{b-a} \sum_{k=1}^{n} t_{k}-t_{k-1} \\
& =\frac{\epsilon}{b-a}\left(t_{1}-t_{0}+t_{2}-t_{1}+\cdots+t_{n}-t_{n-1}\right) \\
& =\frac{\epsilon}{b-a}\left(t_{n}-t_{0}\right)=\frac{\epsilon}{b-a}(b-a)=\epsilon
\end{aligned}
$$

Therefore, by the Cauchy criterion, f is integrable on $[a, b]$
2. (a) For all $\epsilon>0$ there is N such that if $n>N$ then $\left|s_{n}-s\right|<\epsilon$
(b) STEP 1: Scratchwork

$$
\left|\frac{s_{n}}{t_{n}}-0\right|=\frac{\left|s_{n}\right|}{\left|t_{n}\right|} \leq \frac{M}{\left|t_{n}\right|}<\epsilon \Rightarrow\left|t_{n}\right|>\frac{M}{\epsilon}
$$

STEP 2: Let $\epsilon>0$ be given. Since s_{n} is bounded, $\left|s_{n}\right| \leq M$ for some M. Since $t_{n} \rightarrow \infty$ there is N such that if $n>N$ then $t_{n}>\frac{M}{\epsilon}$

With that N, if $n>N$, then

$$
\left|\frac{s_{n}}{t_{n}}-0\right|=\frac{\left|s_{n}\right|}{\left|t_{n}\right|} \leq \frac{M}{\left|t_{n}\right|}<\frac{M}{\frac{M}{\epsilon}}=\epsilon
$$

Therefore $\lim _{n \rightarrow \infty} \frac{s_{n}}{t_{n}}=0 \checkmark$
(c) Let $s_{n}=n$ and $t_{n}=n \rightarrow \infty$, then

$$
\frac{s_{n}}{t_{n}}=\frac{n}{n}=1
$$

Which does not converge to 0
3. (a)

$$
\liminf _{n \rightarrow \infty} s_{n}=\lim _{N \rightarrow \infty} \inf \left\{s_{n} \mid n>N\right\}
$$

(b) From lecture, we know that for any set S, we have

$$
\inf (S)=-\sup (-S)
$$

Now apply the identity above with $S=\left\{s_{n} \mid n>N\right\}$ to get

$$
\inf \left\{s_{n} \mid n>N\right\}=-\sup \left\{-s_{n} \mid n>N\right\}
$$

Finally let $N \rightarrow \infty$ to get

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \inf \left\{s_{n} \mid n>N\right\}=-\lim _{N \rightarrow \infty} \sup \left\{-s_{n} \mid n>N\right\} \\
\liminf _{n \rightarrow \infty} s_{n}=-\left(\limsup _{n \rightarrow \infty}-s_{n}\right)
\end{gathered}
$$

(c) STEP 1: Let $\left(s_{n_{k}}\right)$ be a subsequence of $\left(s_{n}\right)$ going to $s=: \liminf _{n \rightarrow \infty} s_{n}$. Then $-s_{n_{k}}$ is a subsequence of $\left(-s_{n}\right)$ converging to $-s$. Since $\lim \sup _{n \rightarrow \infty}$ is the largest limit point of $\left(-s_{n}\right)$ we get

$$
\limsup _{n \rightarrow \infty}-s_{n} \geq-s=-\liminf _{n \rightarrow \infty} s_{n}
$$

Now let $\left(-s_{n_{k}}\right)$ be a subsequence of $\left(-s_{n}\right)$ going to $t=$: $\limsup \operatorname{sum}_{n \rightarrow \infty}-s_{n}$. Then $s_{n_{k}}$ is a subsequence of $\left(s_{n}\right)$ going to $-t$, but since $\lim \inf _{n \rightarrow \infty} s_{n}$ is the smallest possible limit point of $\left(s_{n}\right)$ we get

$$
\liminf _{n \rightarrow \infty} s_{n} \leq-t=-\left(\limsup _{n \rightarrow \infty}-s_{n}\right)
$$

Combining both terms we get our desired result
4. (a) For all $\epsilon>0$ there is N such that for all m, n if $m, n>N$ then $\left|s_{m}-s_{n}\right|<\epsilon$
(b) For all $\epsilon>0$ there is N such that if $n \geq m>N$ we have $\left|\sum_{k=m}^{n} a_{k}\right|<\epsilon$
(c) Let $\epsilon>0$ be given. Then since $\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}$ converges (it's a geometric series with $\left|\frac{1}{2}\right|<1$), by the Cauchy criterion, there is N such that if $n \geq m>N$ then $\left|\sum_{k=m}^{n}\left(\frac{1}{2}\right)^{k}\right|<\epsilon$.

With that N, if $n \geq m>N$, then

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & =\left|s_{n}-s_{n-1}+s_{n-1}-s_{n-2}+\cdots+s_{m+1}-s_{m}\right| \\
& \leq\left|s_{n}-s_{n-1}\right|+\left|s_{n-1}-s_{n-2}\right|+\cdots+\left|s_{m+1}-s_{m}\right| \\
& \leq\left(\frac{1}{2}\right)^{n}+\cdots+\left(\frac{1}{2}\right)^{m+1} \\
& \leq \sum_{k=m}^{n}\left(\frac{1}{2}\right)^{k} \\
& <\epsilon
\end{aligned}
$$

Therefore $\left(s_{n}\right)$ is Cauchy and therefore $\left(s_{n}\right)$ converges.
5. (a) For all $\epsilon>0$ there is $\delta>0$ such that for all x, if $0<$ $|x-a|<\delta$ then $|f(x)-L|<\epsilon$

(b) STEP 1: Scratch work

$$
|f(x)-L|=\left|2 x^{3}+3-19\right|=\left|2 x^{3}-16\right|=2\left|x^{3}-8\right|=2|x-2| x^{2}+2 x+4
$$

But if $|x-2|<1$ then

$$
|x|=|x-2+2| \leq|x-2|+|2|<1+2=3
$$

Hence: $\left|x^{2}+2 x+4\right| \leq|x|^{2}+2|x|+4 \leq 3^{2}+2(3)+4=9+6+4=19$

Therefore $|f(x)-L| \leq 2|x-2|(19)=38|x-2|<\epsilon$
Which gives $|x-2|<\frac{\epsilon}{38}$
STEP 2: Let $\epsilon>0$ be given, let $\delta=\min \left\{1, \frac{\epsilon}{38}\right\}$, then if $0<$ $|x-2|<\delta$, then $|x-2|<1$ and so $|x|<3$ and $\left|x^{2}+2 x+4\right|<$ 19 , and also $|x-2|<\frac{\epsilon}{38}$ and so

$$
|f(x)-19|=2|x-2|\left|x^{2}+2 x+4\right| \leq 2|x-2|(19)=38|x-2|<38\left(\frac{\epsilon}{38}\right)=\epsilon \checkmark
$$

And therefore $\lim _{x \rightarrow 2} 2 x^{3}+3=19$
6. (a) STEP 1: Scratchwork
$|f(x)-f(y)| \leq C|x-y|^{2}<\epsilon \Rightarrow|x-y|^{2}<\frac{\epsilon}{C} \Rightarrow|x-y|<\sqrt{\frac{\epsilon}{C}}$
Which suggests to let $\delta=\sqrt{\frac{\epsilon}{C}}$

STEP 2: Actual Proof:

Let $\epsilon>0$ be given, let $\delta=\sqrt{\frac{\epsilon}{C}}$, then if $|x-y|<\delta$, then

$$
|f(x)-f(y)| \leq C|x-y|^{2}<C\left(\sqrt{\frac{\epsilon}{C}}\right)^{2}=C \frac{\epsilon}{C}=\epsilon \checkmark
$$

Hence f is uniformly continuous on \mathbb{R}
(b) Notice that the above identity with $y=x+h$ implies that

$$
|f(x+h)-f(x)| \leq C(x+h-x)^{2}=C h^{2}
$$

$$
\text { Therefore }\left|\frac{f(x+h)-f(x)}{h}\right| \leq C h
$$

But since $\lim _{h \rightarrow 0} C h=0$, by the squeeze theorem, we get $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=0$ that is $f^{\prime}(x)=0$ for all x, so f is constant.
7. (a) For all $\epsilon>0$ there is a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$
(b) Let $\epsilon>0$ be given, let let n be TBA, and let P be the evenly spaced (calculus) partition of [0,1] with $t_{k}=\frac{k}{n}$

Then since x^{2} is increasing, we have

$$
\begin{gathered}
m\left(f,\left[t_{k-1}, t_{k}\right]\right)=f\left(t_{k-1}\right)=\left(t_{k-1}\right)^{2}=\left(\frac{k-1}{n}\right)^{2}=\frac{(k-1)^{2}}{n^{2}} \\
M\left(f,\left[t_{k-1}, t_{k}\right]\right)=f\left(t_{k}\right)=\left(t_{k}\right)^{2}=\left(\frac{k}{n}\right)^{2}=\frac{k^{2}}{n^{2}}
\end{gathered}
$$

And therefore

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{k=1}\left(M\left(f,\left[t_{k-1}, t_{k}\right]\right)-m\left(f,\left[t_{k-1}, t_{k}\right]\right)\right)\left(t_{k}-t_{k-1}\right) \\
& =\sum_{k=1}^{n}\left(\frac{k^{2}}{n^{2}}-\frac{(k-1)^{2}}{n^{2}}\right)\left(\frac{1}{n}\right) \\
& =\sum_{k=1}^{n} \frac{k^{2}-(k-1)^{2}}{n^{3}} \\
& =\sum_{k=1}^{n} \frac{k^{2}-k^{2}+2 k-1}{n^{3}} \\
& =\sum_{k=1}^{n} \frac{2 k-1}{n^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n^{3}}\left(2 \sum_{k=1}^{n} k-\sum_{k=1}^{n} 1\right) \\
& =\frac{1}{n^{3}}\left(2\left(\frac{n(n+1)}{2}\right)-n\right) \\
& =\frac{1}{n^{3}}\left(n^{2}+n-n\right) \\
& =\frac{n^{2}}{n^{3}} \\
& =\frac{1}{n}
\end{aligned}
$$

But now let n be large enough such that $\frac{1}{n}<\epsilon$ and we get

$$
U(f, P)-L(f, P)=\frac{1}{n}<\epsilon
$$

Therefore f is integrable on $[0,1]$
Note: Alternatively, in the calculation above, you may notice that the sum above is telescoping, and equal to:

$$
U(f, P)-L(f, P)=\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2}-(k-1)^{2}=\frac{1}{n^{3}}\left(n^{2}-0^{2}\right)=\frac{1}{n}
$$

[^0]: Date: Wednesday, December 15, 2021.

