MATH S4062 - FINAL EXAM - SOLUTIONS

1. Let $\epsilon>0$ be given

Since $f_{n} \rightarrow f$ a.e. and $m(E)<\infty$, by Egorov's Theorem, there is a closed subset $A_{\epsilon} \subseteq E$ with $m\left(E-A_{\epsilon}\right)<\epsilon$ and $f_{n} \rightarrow f$ uniformly on A_{ϵ}.

Since $f_{n} \rightarrow f$ uniformly, there is N such that if $n>N$ then $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in A_{\epsilon}$.

With that same N, if $n>N$ then

$$
\begin{aligned}
\int_{E}\left|f-f_{n}\right| d x & =\left(\int_{A_{\epsilon}}+\int_{E-A_{\epsilon}}\right)\left|f_{n}-f\right| \\
& =\int_{A_{\epsilon}}^{\left|f_{n}(x)-f(x)\right|} d x+\int_{E \epsilon} \underbrace{\left|f_{n}(x)-f(x)\right|}_{<-A_{\epsilon}} d x \\
& \leq m\left(A_{\epsilon}\right) \epsilon+2 M m\left(E-A_{\epsilon}\right) \\
& \leq m(E) \epsilon+2 M \epsilon \\
& =\epsilon(m(E)+2 M)
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, it follows $\lim _{n \rightarrow} \int_{E}\left|f-f_{n}\right| d x=0$
2.

$$
\begin{aligned}
\int|f|^{p} & =\int_{\{x| | f(x) \mid>t\}}|f|^{p}+\int_{\{x| | f(x) \mid \leq t\}}|f|^{p} \\
& \geq \int_{\{x| | f(x) \mid>t\}}|f|^{p} \\
& \geq \int_{\{x| | f(x) \mid>t\}} t^{p} \\
& =t^{p} m\{x| | f(x) \mid>t\} \\
& t^{p} m\{x| | f(x) \mid>t\} \leq \int|f|^{p}
\end{aligned}
$$

And dividing by $t^{p}>0$ gives us the result.
3.

$$
F(x, y, z, u, v)=\left[\begin{array}{c}
x^{2}-y^{2}+3 z-u^{3}+v^{2}+4 \\
2 x y+y^{2}-4 z-2 u^{2}+3 v^{4}+8
\end{array}\right]
$$

To use the Implicit Function Theorem, check that det $F_{u, v}(2,-1,0,2,1) \neq$ 0 (the derivative with respect to what you want to solve for is nonzero)

$$
\begin{gathered}
F_{u, v}=\left[\begin{array}{cc}
-3 u^{2} & 2 v \\
-4 u & 12 v^{3}
\end{array}\right] \\
F_{u, v}(2,-1,0,2,1)=\left[\begin{array}{cc}
-3(2)^{2} & 2(1) \\
-4(2) & 12(1)^{3}
\end{array}\right]=\left[\begin{array}{cc}
-12 & 2 \\
-8 & 12
\end{array}\right]
\end{gathered}
$$

$\operatorname{det} F_{u, v}(2,-1,0,2,1)=(-12)(12)-2(-8)=-144+16=-128 \neq 0$
Therefore the Implicit Function Theorem says that there is G such that $(u, v)=G(x, y)$ near $(2,-1,2,1)$. Moreover

$$
\begin{gathered}
G^{\prime}(2,-1)=-\left(F_{u, v}(2,-1,2,1)\right)^{-1}\left(F_{x, y}(2,-1,2,1)\right) \\
F_{x, y, z}=\left[\begin{array}{ccc}
2 x & -2 y & 3 \\
2 y & 2 x+2 y & -4
\end{array}\right] \\
F_{x, y}(2,-1,0,2,1)=\left[\begin{array}{ccc}
2(2) & -2(-1) & 3 \\
2(-1) & 2(2)+2(-1) & -4
\end{array}\right]=\left[\begin{array}{ccc}
4 & 2 & 3 \\
-2 & 2 & -4
\end{array}\right] \\
G^{\prime}(2,-1,0)=-\left[\begin{array}{cc}
-12 & 2 \\
-8 & 12
\end{array}\right]^{-1}\left[\begin{array}{ccc}
4 & 2 & 3 \\
-2 & 2 & -4
\end{array}\right]=-\left(-\frac{1}{128}\right)\left[\begin{array}{cc}
12 & -2 \\
8 & -12
\end{array}\right]\left[\begin{array}{ccc}
4 & 2 & 3 \\
-2 & 2 & -4
\end{array}\right] \\
=\frac{1}{128}\left[\begin{array}{ccc}
52 & 20 & 44 \\
56 & -8 & 72
\end{array}\right]=\frac{1}{32}\left[\begin{array}{ccc}
13 & 5 & 11 \\
14 & -2 & 18
\end{array}\right]
\end{gathered}
$$

4. STEP 1: Using the first property, we get

$$
\begin{aligned}
\left(f \star K_{n}\right)(x)-f(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) K_{n}(y) d y-f(x) \frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(y) d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-y)-f(x)) K_{n}(y) d y
\end{aligned}
$$

And therefore, we have for every $\delta>0$

$$
\begin{aligned}
\left|\left(f \star K_{n}\right)(x)-f(x)\right| & =\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-y)-f(x)) K_{n}(y) d y\right| \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)-f(x)|\left|K_{n}(y)\right| d y \\
& =\frac{1}{2 \pi} \int_{|y|<\delta}|f(x-y)-f(x)|\left|K_{n}(y)\right| d y \\
& +\frac{1}{2 \pi} \int_{|y| \geq \delta}|f(x-y)-f(x)|\left|K_{n}(y)\right| d y
\end{aligned}
$$

STEP 2: Let $\epsilon>0$ be given.
Then since f is continuous at x, there is a $\delta>0$ such that if $|y|<\delta$, then $|f(x-y)-f(x)|<\frac{\pi \epsilon}{M}$. In that case, using the second property, we get

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{|y|<\delta} \underbrace{|f(x-y)-f(x)|}_{<\frac{\pi \epsilon}{M}}\left|K_{n}(y)\right| d y \\
< & \left(\frac{\pi \epsilon}{2 \pi M}\right) \int_{|y|<\delta}\left|K_{n}(y)\right| d y \\
\leq & \left(\frac{\epsilon}{2 M}\right) \int_{-\pi}^{\pi}\left|K_{n}(y)\right| d y \\
\leq & \left(\frac{\epsilon}{2 M}\right)(M) \\
= & \frac{\epsilon}{2} \checkmark
\end{aligned}
$$

STEP 3: Let $C=\sup _{y}|f(y)|$

By the third property, there is $N>0$ such that for all $n \geq N$ and all x we have

$$
\int_{|y| \geq \delta}\left|K_{n}(y)\right| d y<\frac{\pi \epsilon}{2 C}
$$

This implies that

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{|y| \geq \delta}|f(x-y)-f(x)|\left|K_{n}(y)\right| d y \\
\leq & \frac{1}{2 \pi} \int_{|y| \geq \delta}^{|f(x-y)|+|f(x)|}\left|K_{n}(y)\right| d y \\
= & \frac{2 C}{2 \pi} \int_{|y| \geq \delta}\left|K_{n}(y)\right| d y \\
& <\frac{C}{\pi}\left(\frac{\pi \epsilon}{2 C}\right)=\frac{\epsilon}{2} \checkmark
\end{aligned}
$$

STEP 4: Putting everything together, with N as above, if $n>N$ then

$$
\left|\left(f \star K_{n}\right)(x)-f(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \checkmark
$$

And therefore $\lim _{n \rightarrow \infty}\left(f \star K_{n}\right)(x)=f(x)$
5. Let $f(x)=e^{x}$ and $\epsilon=1$, and suppose that any polynomial p, and for all $x \in \mathbb{R}$ we have $|f(x)-p(x)|<1$

Notice in particular that

$$
|f(x)|=|f(x)-p(x)+p(x)| \leq|f(x)-p(x)|+|p(x)|<1+|p(x)|
$$

Since p is a polynomial, we have $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, hence $|f(x)|<1+|p(x)|$ implies

$$
0 \leq e^{x} \leq 1+\left|a_{0}\right|+\left|a_{1}\right||x|+\cdots+\left|a_{n}\right||x|^{n}
$$

Dividing by $|x|^{n}$ we get

$$
0 \leq \frac{e^{x}}{|x|^{n}} \leq \frac{1}{|x|^{n}}+\frac{\left|a_{0}\right|}{|x|^{n}}+\frac{\left|a_{1}\right|}{|x|^{n-1}}+\cdots+\left|a_{n}\right|
$$

But now, letting $x \rightarrow \infty$, the right-hand-side tends to $\left|a_{n}\right|$, so for large x, the right-hand-side is bounded, but this contradicts

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{|x|^{n}}=\infty
$$

Which you obtain after repeated applications of L'Hôpital's rule. $\Rightarrow \Leftarrow$

