MATH S4062 - FINAL EXAM STUDY GUIDE

The Final Exam will take place on Friday, August 12, 2022 from 10:45 am to $12: 20 \mathrm{pm}$ in our usual lecture room. It is a closed book and closed notes exam, and counts for 40% of your grade.

This exam covers the whole course. This corresponds to Chapters 7, 8, 9, and 11 of Rudin, and the material from Homework 1-9.

There will be 5 questions in total, so expect to spend roughly 20 mins per question. At least 3 questions will come from chapters 9 and 11 .
(1) The first one will be one of the "Proofs you should know" that will be found in the study guide.
(2) One question will be taken directly from Homework 1-9
(3) One question will be taken from the Review Session
(4) One new question
(5) Another new question

I will probably not ask for definitions, but you can always include them if you want some partial credit.

[^0]
Proofs you should know

Know how to prove the following theorems. I will NOT ask you to restate the theorems:
(1) If $f_{n} \rightarrow f$ uniformly and each f_{n} is continuous at x_{0} then f is continuous at x_{0}
(2) The Power Series converges uniformly on $[-r, r]$ if $r<R$
(3) $\widehat{f \star g}(n)=\hat{f}(n) \hat{g}(n)$
(4) The Chain Rule (the proof I gave during lecture)
(5) Implicit Function Theorem but ONLY STEPS 1, 2 (up to " f invertible"), and just the differentiation formula in STEP 5.
(6) Countable sub-additivity (Property 2 in Lecture 18)
(7) Bounded Convergence Theorem
(8) The two corollaries about convergence of series from Lecture 22
(9) The two regularity facts from Lecture 22

DEfinitions you should know

Although I will not explicitly ask for definitions, it's still useful to know the concepts below
(1) $f_{n} \rightarrow f$ pointwise
(2) $f_{n} \rightarrow f$ uniformly
(3) A sequence of functions that converges pointwise but not uniformly ($f_{n}=x^{n}$ on [0,1] works)
(4) The $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n}}$ example, whose uniform limit is not differentiable
(5) $C[a, b]$ and its metric d
(6) $\sum_{n=0}^{\infty} f_{n}(x)$ converges uniformly
(7) $\left(f_{n}\right)$ is bounded
(8) $\left(f_{n}\right)$ is equicontinuous
(9) Arzelà-Ascoli Theorem
(10) Fixed points, Contraction
(11) Weierstraß Approximation Theorem
(12) Power series, Radius of Convergence
(13) Fubini for series, including the counterexample
(14) Fourier series on $[-\pi, \pi], \hat{f}(n)$ on $[-\pi, \pi], S_{N}(f)$
(15) $f \star g$, both on $[-\pi, \pi]$ and on $(-\infty, \infty)$
(16) Self-Adjointness of the Fourier transform
(17) $\|A\|$
(18) An unbounded linear transformation (see Homework 6)
(19) f differentiable at x and f differentiable
(20) $\frac{\partial f_{i}}{\partial x_{j}},\left[f^{\prime}(x)\right], D_{u} f, \nabla f$
(21) Mean Value Theorem and the counterexample preceding it
(22) Inverse Function Theorem, diffeomorphism
(23) Implicit Function Theorem: Just know the condition $\operatorname{det} F_{y}\left(x_{0}, y_{0}\right)$ and the formula for $G^{\prime}\left(x_{0}\right)$, the rest is not too important. Remember: "the derivative with respect to what you want to solve for is nonzero"
(24) Clairaut's Theorem
(25) $m_{\star}(E)$ and its properties
(26) Measurable sets and their properties, $m(E)$
(27) Measurable Function
(28) Characteristic Function, Simple Function
(29) Egorov's Theorem and Lusin's Theorem
(30) The Lebesgue Integral. This is done in 4 stages: Simple Functions, Bounded Functions with finite support, Non-Negative Functions, and General Functions.
(31) The counterexample to $\int f_{n} \nrightarrow \int f$ from Lecture 21
(32) The Bounded Convergence Theorem
(33) Fatou's Lemma
(34) $f_{n} \nearrow f$ and the Monotone Convergence Theorem
(35) Interchange of limits and series
(36) The Dominated Convergence Theorem
(37) $L^{1},\|f\|_{L_{1}}$, and more generally L^{p} and $\|f\|_{L_{p}}$ for $1 \leq p<\infty$

Trig Formulas you should know

Here is a list of trig identities you should know. Anything else will be provided
(1) $\cos ^{2}(x)+\sin ^{2}(x)=1$
(2) $1+\tan ^{2}(x)=\sec ^{2}(x)$
(3) Derivatives of sin, cos, tan, sec
(4) Antiderivatives of \sin , \cos , \tan
(5) $\cos (-x)=\cos (x), \sin (-x)=-\sin (x), \tan (-x)=-\tan (x)$
(6) $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$
(7) $\sin (2 x)=2 \sin (x) \cos (x)$
(8) $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
(9) $\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
(10) $\int \cos ^{2}(x) d x, \int \sin ^{2}(x) d x$

List of formulas That will be provided

Here is a list of formulas that I will provide if necessary. You do not need to memorize them.
(1) Fourier series and coefficients for intervals other than $[-\pi, \pi]$
(2) D_{N} and its explicit formula
(3) The Fourier Transform and all its properties, but I will not give you Self-Adjointness or the properties of $f \star g$
(4) The definition of a good kernel
(5) The definition of the Schwarz space
(6) All the formulas for $\cos (A) \cos (B), \sin (A) \sin (B), \cos (A) \sin (B)$
(7) $\|f\|_{L^{\infty}}$

Things you can ignore

- Lecture 1: The proof in the section "Uniform Convergence and Integration"
- Lecture 1: The $n x\left(1-x^{2}\right)^{n}$ example but I could give you the formula and ask you to show $f_{n} \rightarrow 0$ pointwise on $[0,1]$ but $\int_{0} f_{n} \nrightarrow 0$
- Lecture 2: The proof in the section "Uniform Convergence and Differentiation"
- Lecture 2: The $f_{n}=\frac{x^{2}}{\left(1+x^{2}\right)^{n}}$ example but I could ask you to show what $\sum f_{n}$ converges to.
- Lecture 3: The "Counterexample" section showing that $\sin (n x)$ has no convergent subsequence
- Lecture 3: The proof of the Arzelà-Ascoli Theorem
- Lecture 4: The proof of the Picard-Lindelöf Theorem, but notice how we wrote the ODE as a fixed point problem
- Lecture 4: For the continuous but nowhere differentiable function, I just want you to understand how the Weierstraß M test is used, the rest you can safely ignore
- Lecture 5: The proof of the Weierstraß Approximation Theorem
- Lecture 5: The terminology of the Stone-Weierstraß Theorem, I would give it to you if necessary
- Lecture 5: The proof of term-by-term integration and differentiation of series
- Lecture 6: The proof of Fubini for series
- Lecture 6: The statement and proof of Taylor's theorem
- Lecture 6: The section on the Gamma Function and the section on the Half-Derivative
- Lecture 7: The proof of uniqueness of Fourier series
- Lecture 8: The proof of the formula for D_{N}
- Lecture 8: The proof of pointwise convergence (the one with Lipschitz at x)
- Lecture 9: The proof of the Best Approximation Lemma and the proof of Mean-Squared convergence
- Lecture 10: The proofs in the section "Derivatives and Fourier transforms"
- Lecture 10: The proof of the Fourier Inversion Formula and of Plancherel's Theorem
- Lecture 11: You don't need to memorize the condition with $\|B-A\|\left\|A^{-1}\right\|<1$, and you can skip the proof, but just know that "if A is invertible and B is close to A, then B is invertible."
- Lecture 11: The proof that $A \rightarrow A^{-1}$ is continuous
- Lecture 12: The proof that derivatives are unique
- Lecture 12: The proof that if the partial derivatives exist and are continuous, then f is differentiable
- Lecture 13: The part of the proof of the Mean Value Theorem starting from "Claim."
- Lecture 15: The proof of the Inverse Function Theorem, but just notice that it's an application of the Banach Fixed Point Theorem
- Lecture 16: The proof of the Implicit Function Theorem except for STEPS 1, 2 (up to " f invertible"), and just the differentiation formula in STEP 5.
- Lecture 16: The Rank Theorem
- Lecture 17: The Rectangle Lemma and the proof of Clairaut's theorem
- Lecture 17: The true second derivative test
- Lecture 17: For differentiation of integrals, all I want you to notice is how you're using a difference quotient, and uniform convergence
- Lecture 17: An interesting example
- Lecture 18: The first fact about disjoint unions of rectangles
- Lecture 18: The proof of Property 5 (I skipped that in lecture)
- Lecture 19: The statement and proof with $m(E \Delta F) \leq \epsilon$ (I skipped that in lecture) and the proof of Proposition 4 in the Appendix
- Lecture 20: The Approximation Theorem with the truncation, but the one with $\left|\phi_{k}\right|$ you should know
- Lecture 20: Proof of Independence of Representation in the Lebesgue Integral
- Lecture 21: The comparison between Riemann and Lebesgue integrals, but all I really want you to notice is the "Upshot" part of that proof, and how you can use the BCT to pass through the limit
- Lecture 22: You don't need to memorize the statements of the section "Regularity," but you need to know their proofs
- Lecture 22: The proof that L^{1} is complete
- Homework 4: Ignore Additional Problems 1 and 2
- Homework 5: Ignore Additional Problems 2, 3, and 5
- Homework 6: Ignore Problem 14
- Homework 7: Ignore Problem 16 and Additional Problem 1
- Homework 8: Ignore Problem 28
- Homework 9: Ignore Additional Problems 2 and 4

[^0]: Date: Friday, August 12, 2022.

